Theoretical Calculation of Thermochemistry for Molecules in the Si-P-H System

Michael R. Zachariah*

Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Carl F. Melius

Sandia National Laboratories, Livermore, California 94551

Received: June 13, 1996; In Final Form: September 4, 1996[®]

Ab initio molecular orbital calculations have been performed on species belonging to the Si-P-H system. These computations have been coupled to a bond additivity correction procedure to obtain heats of formation for 27 species. The Si-P single bond energy was found to be nominally about 300 kJ/mol, which is somewhat weaker than a Si-Si single bond. Multiple bond character in Si-P was found to be relatively weak.

Introduction

Silane decomposition chemistry has received considerable attention owing to its importance in semiconductor manufacturing. However, it is well-known that when dopants such as phosphorus or boron are added in small quantities, significant effects on growth rates are observed. In the case of phosphorus dopants, small quantities of PH₃ can lead to a factor of 20 decrease in polysilicon growth rate.¹ Understanding this behavior requires a knowledge of both surface and gas phase chemistries that might account for such a striking result. Unfortunately, no experimental thermochemical data are available to develop models for some of the effects observed in the growth of silicon films. In this paper we develop the thermochemical data base for the vapor phase interaction between silicon and phosphorous species that may be used in models to describe vapor deposition of silicon.

Calculation Methodology

All calculations were performed using the BAC-MP4 procedure outlined by Melius.² This procedure involves ab initio molecular orbital calculation using the Gaussian series of programs3 followed by application of a bond additivity correction (BAC) procedure to the calculated energy. The essence of the BAC procedure is to enable one to calculate energies at accuracies sufficient for chemical applications without the need to resort to large basis sets or configuration interaction terms. This is a particularly important issue where the goal is generation of a sufficiently complete data set of consistent thermochemical data necessary for detailed chemical modeling. In a recent study, thermochemical data on about 100 closed and open shelled C1 and C2 fluorocarbon and fluoroxy hydrocarbons species were obtained by the BAC-MP4 method. For about 70 of these species, literature values for enthalpies of formation were available for comparison to the calculated values. The average difference between the calculated and literature values was about 9 kJ/mol.⁴

Equilibrium geometries, vibrational frequencies, and zeropoint energies were calculated at the HF/6-31G(d) level. Single point energies were calculated at the MP4/6-31G(d,p) level to which the BAC procedure was applied. In the BAC method, errors in the electronic energy of a molecule are treated as systematic bondwise additive corrections that depend on bonding partner, distance, and next nearest neighbors. The energy per bond is corrected by calibration against reference molecules of known heats of formation.

Melius² has shown that for any molecule with bond connectivity $A_k - A_i - A_j - A_l$, the error in calculating the electronic energy can be estimated through the use of an empirical correction E_{BAC} to each bond $A_i - A_i$, where

$$E_{\text{BAC}}\left(\mathbf{A}_{i}-\mathbf{A}_{j}\right)=f_{ij}g_{kij}g_{ijl}$$
(1)

and

$$f_{ii} = A_{ii} \exp(-\alpha_{ii} r_{ii}) \tag{2}$$

 A_{ij} and α_{ij} are calibration constants that depend on bond type. r_{ij} is the bond length at the Hartree–Fock level. g_{kij} is a correction to each second-nearest neighbor A_k , where

$$g_{kii} = (1 - h_{ik} h_{ii}) \tag{3}$$

and

$$h_{ik} = B_k \exp[-\alpha_{ik}(r_{ik} - 1.4 \text{ Å})]$$
 (4)

 B_k is a calibration constant that depends on the atom type. For open shell molecules, an additional correction is needed owing to contamination from higher spin states. This error E_{spin} is estimated using an approach developed by Schlegel in which the spin energy correction is obtained from the difference between the energy at the MP3 level using the UHF wave function and the projected energy⁵ or

$$E_{\rm spin} = E(\rm UMP3) - E(\rm PUMP3)$$
(5)

For closed-shell species having a UHF instability, the spin

^{*} To whom correspondence should be addressed. E-mail: mrz@tiber.nist.gov.

[®] Abstract published in Advance ACS Abstracts, November 1, 1996.

TABLE 1: Bond Additivity Correction Parameters (MP4/6-31G(d,p)//HF/6-31G(d))

bond	calibration species	$A_{ij}{}^a$	α_{ij}	atom type	$B_{\rm k}$
Si-H	SiH ₄	38.6	2.0	Н	0
P-H	PH ₃	137.5	2.0	Si	0
Si-P	PH_2-SiH_3 ; $PH=SiH_2$	7085.2	2.91	Р	0
H-H	H ₂	18.98	2.0		
^a kcal	/mol.				

 TABLE 2: Heat of Formation (298 K): Literature and Computation

	theo	ory	recommend	ded literature		
species	CBS-Q	G2	JANAF ^a	Gurvich		
PH ₃	7.1	8.3	7.1	5.0		
PH_2	132.5	137.1	110.3	119.5		
PH	237.4	240.8	237.4	230.7		

^a JANAF value adjusted to account for correct reference state.

TABLE 3: Heat of Formation (298 K) for PH₂-SiH₃^a

	CBS-Q	G2
from $PH_3 + SiH_2 = PH_2 - SiH_3$ from $PH_4 + SiH_2 = PH_2 - SiH_3$	36.8	44.9
from $PH_2 + SiH_3 - PH_2 - SiH_3$ from $PH_3 + SiH_4 = PH_2 - SiH_3 + H_2$	39.3	38.3

^{*a*} Heats of formation based on previously computed heats of formation by BAC-MP4 for the following species: $SiH_4 = 34.3$, $SiH_3 = 198.1$, $SiH_2 = 270.9$ (kJ/mol).

correction is

$$E_{\rm spin} = KS(S+1) \tag{6}$$

E(MD4)

where K = 41.8 kJ/mol.

Bond Correction Parameters

.....

Implementation of the BAC procedure requires calibration against molecules of known heats of atomization in order to define the parameters. Table 1 lists the parameters used for the calculations. The Si-H BAC parameters listed are based

TABLE 4: Energies, Bond Corrections, and Heats of Formation^a

Zachariah and Melius

on calibration against the known heat of formation of silane.² For the P–H bond we reference against the PH₃ molecule. One area of confusion, however, is the accepted standard state of solid phosphorus. The crystalline forms of red phosphorus are thermodynamically more stable than the white phosphorus. However, conversion of the white to the red is extremely slow, and it is generally believed that better data exist for the white. The most recent thermochemical compilations in the JANAF tables⁶ have defined the white phosphorus as the standard reference state, a change from the previous edition that used the red. However, by conversion of standard states, it appears that the change in reference state was not carried through to some of the phosphorus-containing compounds listed in the latest JANAF edition, in particular, to the relevant species in this study-PH(g), PH₂(g), and PH₃(g). The change in reference state implies that the heats of formation for these three species should be lowered by 15.8 kJ/mol (3.78 kcal/mol) at 298 K relative to the numbers quoted in the JANAF tables. When the correct standard state is accounted for, the new defined JANAF value for PH₃ would be 7.1 kJ/mol, which is slightly higher than the recommended value of 5.0 kJ/mol suggested by Gurvich et al.⁷ Because of this discrepancy, we have also implemented some of the higher level computational approaches (G2,8 CBS-Q9) and obtain excellent agreement between the two computational methods and the JANAF recommendation. The results for the simple phosphorous hydrides are summarized in Table 2. For the purposes of calibration of the BAC parameter for the P-H bond, we use the G2 method, since it is consistent with bond literature reviews and the less known CBS method.9 Quite good agreement is also obtained between the computation and the recommended value for PH. The PH₂ radical has a quoted literature recommendation of between 20 and 30 kJ/ mol lower than the G2 method. However, the stated uncertainty in the JANAF recommendation is 96 kJ/mol!

Since no experimental data are available to define the strength of the Si-P bond, we rely on high-level G2 computation for the calibration. We based calibration of the Si-P bond on the most likely closed shell species to form in the gas phase during

 $E(\mathbf{D} \wedge \mathbf{C})$

τī

 $E(\mathbf{7D})$

species	E(NIF4)	$E(\Pi\Gamma)$	E(ZP)	E(BAC)	$n_{\rm f,298}$
PH [singlet]	-341.303 955	-341.192 413	0.005 846	34.2	402.1
PH [triplet]	-341.362 976	-341.267 334	0.005 818	36.9	244.4
PH_2	-341.977 722	-341.854 065	0.014 618	71.3	140.1
PH ₃	-342.605 927	-342.454 193	0.026 181	104.3	8.1
PH ₂ -SiH ₃	-632.804 811	-632.543 641	0.045 674	170.8	37.7
PH ₃ -SiH ₂ [adduct]	-632.748047	-632.482056	0.045 529	171.6	186.6
PH_2-SiH_2	-632.161 865	-631.924 805	0.035 497	151.5	198.4
PH ₂ -SiH	-631.562 134	-631.327 026	0.026 484	131.9	247.9
PH ₂ -Si	-630.946 777	-630.737 061	0.018 383	117.7	335.6
PH-SiH ₃	-632.177 368	-631.944 214	0.035 113	138.0	170.0
P-SiH ₃ [singlet]	-631.511 047	-631.288 696	0.026 523	104.9	408.6
P-SiH ₃ [triplet]	-631.562 988	-631.357 849	0.026 969	103.4	274.5
PH-SiH ₂ [singlet]	-631.584 656	-631.339 051	0.026 765	149.4	171.4
PH-SiH ₂ [triplet]	-631.536 316	-631.326 051	0.025 177	151.7	293.1
P-SiH ₂	-630.952026	-630.734 558	0.016 819	106.8	328.8
PH-SiH	-630.937 683	-630.736 023	0.016 955	140.5	332.9
P-SiH [singlet]	-630.364 8991	-630.131 5055	0.008 011	130.6	304.5
P-SiH [triplet]	-630.318 665	-630.124 207	0.008 095	90.6	463.9
PH ₂ -Si	-630.946 777	-630.737 061	0.018 383	117.7	335.6
PH-Si [singlet]	-630.376 282	-630.154 785	0.007 354	108.8	293.7
PH-Si [triplet]	-630.296 387	-630.118 286	0.008 701	105.5	509.2
P-Si	-629.757 081	-629.542053	0.001 666	101.7	388.8
SiH ₃ -PH-SiH ₃	-923.006 531	-922.634 583	0.064 674	238.5	59.3
PH ₂ -SiH ₂ -PH ₂	-974.245 728	-973.856 384	0.057 263	260.0	36.9
c-SiH ₂ -PH-SiH ₂	-921.793 152	-921.438 111	0.046 921	223.3	170.4
c-SiH ₂ -PH-SiH ₂ -PH	-1263.267 456	-1262.788 696	0.059 423	311.7	83.6
c-Si-PH-Si	-919.363 342	-919.048 828	0.011 327	173.6	424.1

E(HE)

^{*a*} E(MP4) = MP4 energy (hartrees); E(HF) = Hartree-Fock energy (hartrees); E(ZP) =zero-point energy (hartrees); E(BAC) = bond additivity correction (kJ/mol); $H_{f,298} =$ enthalpy of formation at 298.15 K. All in kJ/mol.

TABLE 5: Vibrational Frequencies (cm⁻¹)^a

PH [singlet]	2291														
PH [triplet]	2280														
PH ₂	1123	2302	2304												
PH ₃	1018	1135	1135	2323	2323	2327									
PH ₂ -SiH ₃	156	434	465	481	729	776	899	920	931	1100	2123	2129	2130	2313	2315
PH ₃ -SiH ₂ [adduct]	165	258	359	361	708	724	948	1021	1105	1121	1932	1943	2380	2407	2412
PH ₂ -SiH ₂	143	431	482	524	723	759	901	1101	2106	2119	2309	2314			
PH ₂ -SiH	363	404	490	535	817	1093	1981	2344	2354						
PH ₂ -Si	363	483	595	1089	2335	2339									
PH-SiH ₃	164	432	482	508	771	899	922	924	2120	2121	2134	2286			
P-SiH ₃ [singlet]	354	489	516	864	883	957	2087	2119	2127						
P-SiH ₃ [triplet]	432	517	517	897	920	920	2122	2122	2123						
PH-SiH ₂ [singlet]	466	519	586	597	763	938	2157	2175	2289						
PH-SiH ₂ [triplet]	192	425	530	561	762	900	2095	2106	2298						
P-SiH ₂	363	501	536	855	2147	2191									
PH-SiH	461	487	516	780	2108	2293									
P-SiH [singlet]	298	298	730	2191											
P-SiH [triplet]	538	595	2039												
PH ₂ -Si	363	438	595	1089	2335	2339									
PH-Si [singlet]	137	633	2111												
PH-Si [triplet]	416	720	2274												
P-Si	653														
SiH ₃ -PH-SiH ₃	74	97	119	403	451	466	483	549	615	708	808	882	913	917	927
	930	934	2114	2122	2126	2133	2134	2136	2307						
PH ₂ -SiH ₂ -PH ₂	116	129	129	395	425	463	529	593	718	729	774	819	924	1095	1099
	2117	2119	2313	2315	2320	2322									
c-SiH ₂ -PH-SiH ₂	326	351	385	388	478	510	540	601	693	699	732	888	896	2142	2147
	2156	2162	2294												
c-SiH ₂ -PH-SiH ₂ -PH	66	232	381	410	422	431	435	460	519	553	673	676	702	761	798
	811	911	924	2123	2128	2135	2137	2288	2316						

312 ^a Frequencies calculated at HF/6-31g(d) geometry and scaled by 0.89.

432

543

597

2363

193

TABLE 6: Moments of Inertia (au)

c-Si-PH-Si

PH [singlet]	0.0	3.2	3.2
PH [triplet]	0.0	3.2	3.2
PH ₂	2.9	3.5	6.4
PH ₃	6.0	6.0	7.2
PH ₂ -SiH ₃	16.0	152.4	153.4
PH ₃ -SiH ₂ [adduct]	15.0	168.9	170.0
PH ₂ -SiH ₂	12.4	145.8	148.8
PH ₂ -SiH	9.6	135.2	140.5
PH ₂ -Si	5.9	132.4	134.1
PH-SiH ₃	12.9	146.7	149.9
P-SiH ₃ [singlet]	9.6	140.2	140.2
P-SiH ₃ [triplet]	9.7	144.1	144.1
PH-SiH ₂ [singlet]	8.2	117.5	125.7
PH-SiH ₂ [triplet]	8.2	117.5	125.7
P-SiH ₂	5.8	120.9	126.7
PH-SiH	5.7	120.0	125.7
P-SiH [singlet]	0.0	100.5	100.5
P-SiH [triplet]	2.6	111.6	114.2
PH ₂ -Si	5.9	132.4	134.1
PH-Si [singlet]	3.2	103.1	106.3
PH-Si [triplet]	3.2	118.6	121.7
P-Si	0.0	94.5	94.5
SiH ₃ -PH-SiH ₃	94.8	350.6	420.0
$PH_2-SiH_2-PH_2$	81.1	394.9	454.7
c-SiH ₂ -PH-SiH ₂	153.5	157.4	284.5
c-SiH2-PH-SiH2-PH	262.8	330.2	545.2
c-Si-PH-Si	110.0	141.8	251.8

SiH₄/PH₃ pyrolysis: PH₂-SiH₃. Heats of formation were determined by three reactions, $PH_3 + SiH_2$, $PH_2 + SiH_3$, and the isogyric reaction $PH_3 + SiH_4 = PH_2 - SiH_3 + H_2$, summarized in Table 3. As expected, the largest discrepancy in the calculated heat of formation between G2 and CBS occurs for the reaction PH_3 + SiH_2 , presumably because of the multireference character of SiH₂. Agreement between G2 and CBS is considerably better when using $PH_2 + SiH_3$ and consistent with what should be the more accurate isodesmic reaction. In either case the largest deviation is still only 7 kJ/ mol, certainly within common experimental error. For the purposes of defining the BAC parameter for the Si-P bond, we used the G2 value of 38 kJ/mol (9.1 kcal/mol) corresponding

TABLE 7: Bond Dissociation Energies (kJ/mol)

BOND	BDE (kI/mol)	BOND	BDE (kI/mol)
			(KJ/1101)
H_2P-H	350	H_2PS_1H-H	268
³ HP-H	322	H ₃ SiPH-H	350
³ P-H	289	1 HP=SiH ₂ = 1 HP + 1 SiH ₂	502
H ₂ P-SiH ₃	300	= ³ HP + ³ SiH ₂	427
SiH ₃ PH-SiH ₃	309	= ³ HP + ¹ SiH ₂	344
H ₂ PSiH ₂ -PH ₂	349	3 HP=SiH ₂ = 3 HP + 1 SiH ₂	222
HP-SiH ₃	272	P-SiH	396
P-SiH ₃	240	HP-Si	401
H ₂ P-SiH ₂	213	H_3P-SiH_2	92
P-SiH ₂	258	SiH ₃ -H	382
H ₂ PSiH ₂ -H	379	H ₃ Si-SiH ₃	316

to the isogyric reaction. The Si=P double bond was calibrated from the species PH=SiH₂. Agreement between G2 and CBS for the heat of formation calculated for PH=SiH₂ from the reaction ${}^{3}PH + {}^{3}SiH_{2} = {}^{1}PH=SiH_{2}$ was excellent and gave a value of 172 kJ/mol based on BAC-MP4 numbers for the heat of formation of ³PH and ³SiH₂ of 244 and 354 kJ/mol, respectively.

Molecular Properties

Tables 4-7 list the total energies, heats of formation, bond corrections, vibrational frequencies, moments of inertia, and bond dissociation energies for the species computed. Molecular geometries and NASA type polynomial fits¹⁰ for C_p , H, and Sare included in Charts 1 and 2, respectively.

The P-H bond (in PH₃) is nominally slightly shorter (1.40 vs 1.48 Å) and the bond energy smaller (350 vs 382 kJ/mol) than for Si-H (SiH₄). Mulliken charge analysis indicates that although the P-H bond is essentially covalent, the Si-H bond is slightly ionic with silicon being the electron donor. Neither the P-H nor the Si-H bond dissociation energy (BDE) was found to be sensitive to P or Si substitution on the central atom relative to the corresponding hydride. The Si-P single BDE in PH₂-SiH₃ is about 23% weaker than the Si-Si single BDE

	2		PH, singlet				4		P-SiH ₂		
Р		1	0	0	0	Р		1	0	0	0
Н		2	0	0	1.411	Si		2	0	0	2.131
	2		PH, triplet			Н		3	1.3228	0	2.7683
Р		1	0	0	0	Н		4	-1.3062	0.168	2.7775
Н		2	0	0	1.411		4		PH-SiH (cis)		
	3		PH_2			Р		1	0	0	0
Р		1	0	0	0	Si		2	0	0	2.1398
Н		2	0	0	1.407	Η		3	1.4025	0	-0.119
Н		3	1.4044	0	-0.0852	Н		4	-1.2879	0	2.8627
	4		PH3				3		P-SiH, singlet		
Р		1	0	0	0	Р		1	0	0	0
Н		2	0	0	1.4031	Si		2	0	0	1.9233
Н		3	1.3969	0	-0.1319	Н		3	0	0	3.3869
Н		4	-0.145	-1.3893	-0.1319		3		P-SiH, triplet		
	7		PH ₂ -SiH ₃			Р		1	0	0	0
Р		1	0	0	0	Si		2	0	0	2.0826
Si		2	0	0	2.2663	Н		3	1.2905	0	2.8256
Н		3	1.3922	0	-0.1809		4		PH ₂ -Si		
Н		4	-0.162	1.383	-0.1796	Р		1	0	0	0
Н		5	0.8979	1.0146	2.8513	Si		2	0	0	2.2491
Н		6	-1.3791	0.2587	2.7215	Н		3	1.348	0	-0.3757
Н		7	0.4223	-1.337	2.7244	Η		4	-0.3289	-1.3069	-0.3768
	7		PH ₃ -SiH ₂ adduct				3		PH-Si, singlet		
Р		1	0	0	0	Р		1	0	0	0
Si		2	0	0	2.4041	Si		2	0	0	2.0484
Н		3	1.2685	0	-0.5701	Н		3	1.3962	0	0.3467
Н		4	-0.5233	-1.1555	-0.5701		3		PH-Si, triplet		
Н		5	0.3973	1.4575	2.356	Р		1	0	0	0
Н		6	-1.4914	0.2401	2.3561	Si		2	0	0	2.1814
Н		7	-0.6238	0.9676	-0.7858	Н		3	1.4002	0	-0.1615
	6		PH_2-SiH_2				2		P-Si		
Р		1	0	0	0	Р		1	0	0	0
Si		2	0	0	2.2658	Si		2	0	0	1.9678
Н		3	1.3886	0	-0.2077		10		SiH ₃ -PH-SiH ₃		
Н		4	-0.1618	-1.3839	-0.1726	Р		1	0	0	0
Н		5	1.0018	-0.8838	2.8958	Si		2	0	0	2.2625
Н		6	0.1637	1.3798	2.7666	Н		3	1.3909	0	-0.1944
	5		PH ₂ -SiH			Si		4	-0.3829	2.1787	-0.4751
Р		1	0	0	0	Η		5	0.8414	1.0631	2.8472
Si		2	0	0	2.2493	Н		6	-1.3919	0.1952	2.71
Н		3	1.3437	0	-0.3879	Н		7	0.4896	-1.3102	2.7272
Н		4	-0.3329	-1.314	-0.341	Н		8	-0.1725	2.3838	-1.9193
Н		5	1.0667	1.0618	2.316	Н		9	-1.7877	2.4708	-0.1334
	4		PH ₂ -Si			Н		10	0.4914	3.1027	0.2745
Р		1	0	0	0		9		$PH_2-SiH_2-PH_2$		
Si		2	0	0	2.2491	Р		1	0	0	0
Н		3	1.348	0	-0.3757	Si		2	0	0	2.2684
Н		4	-0.3289	-1.3069	-0.3768	Н		3	1.391	0	-0.1827
	6		PH-SiH ₃			Н		4	-0.1667	-1.3834	-0.1706
Р		1	0	0	0	Н		5	0.9633	-0.9595	2.8433
Si		2	0	0	2.267	Н		6	-1.3583	-0.3806	2.7032
Н		3	1.4039	0	-0.119	Р		7	0.6083	2.066	2.981
Н		4	0.6864	1.201	2.7826	Н		8	-0.5856	2.729	2.6597
Н		5	-1.397	0.0007	2.7383	Н	0	9	0.3049	1.8743	4.3381
Н	-	6	0.6851	-1.2017	2.7826	P	8		$c-S_1H_2-PH-S_1H_2$	0	0
D	5		$P = S_1H_3$	0	0	P		1	0	0	0
P.		1	0	U	0	S1		2	U 1 2094	U	2.285
51		2	0	0	2.2353	H C'		3	1.3984	0	-0.1488
H		3	1.46/2	0	2.453	51		4	-0.1214	1.97	1.15
H		4	-0.5961	-1.1944	2.8636	H		2	1.2536	-0.3862	2.9483
н	-	5	-0.5942	1.1962	2.8624	H		0	-1.1922	-0.5980	2.9007
р	5	1	$P-SIH_3$, triplet	0	0	H		/	1.0526	2.8517	1.0839
P C:		1	0	0	0	н	10	8	-1.3941	2.6904	1.0000
51		2	0	0	2.2081	р	10	1	$c-SIH_2-PH-SIH_2-PH$	0	0
н		3	1.38/0	0	2.7713	P C:		1	0	0	0
н Ц		+ 5	-0.6038	1 2017	2.1113	ы Ц		2	1 4016	0	2.2014
11	5	5	DU_SiL singlet	1.2017	2.7713	п с;		5	-0 1762	0 01146	0.1209
P	J	1	0	0	0	ы Ц		+ 5	0.9281	2.2440 -0.0649	2 8055
r Si		2	0	0	2 0601	и П		5	-1 3657	-0.2040	2.07JJ 1 710
H		$\frac{2}{3}$	1 4057	0	2.0001	ц		7	0.6071	3 08/1	2.7740
н			1 1835	-0.0001	2 0222	н		×	-1 5947	2 6/28	0.550
н		+ 5	-1 2/98	-0.0001	2.3322	P		0	-0.6111	2.0420	2 5007
11	5	5	PH-SiHa triplat	0.0005	2.0507	н		10	-0.4656	2.101	2.5007
р	5	1	0	0	0	11	1	10	c-Si-PH-Si	2.7143	5.2244
Si		2	Ő	õ	2 0601	P	-	1	0	0	0
Н		3	1 4057	õ	-0.0899	Si		2	ŏ	0	2 1294
Н		4	1.1835	-0.0001	2 9322	Н		วั	0.8114	Ő	-1 1333
H		5	-1.2498	-0.0003	2.8307	Si		4	-2.0124	-0.0029	0.6959
			-								

CHART 2: NASA Polynomial Coefficients for C_p , H, and S as a Function of Temperature⁹ a

PH

0.27950157E+01 0.17922738E-02-0.80989109E-06 0.17532626E-09-0.14975313E-13 0.47486739E+05 0.60994191E+01 0.37502027E+01-0.18229677E-02 0.40506209E-05 -0.25691441E-08 0.52682452E-12 0.47296838E+05 0.14656557E+01 PH

0.24986682E+01 0.24383019E-02-0.13056343E-05 0.33655625E-09-0.33904679E-13 0.28616991E+05 0.88082001E+01 0.38440816E+01-0.25051985E-02 0.57320095E-05 -0.42458632E-08 0.11108862E-11 0.28314027E+05 0.21803029E+01 PH2

0.24764083E+01 0.52941967E-02-0.26891816E-05 0.65443120E-09-0.62245769E-13 0.15933902E+05 0.10018891E+02 0.40314478E+01-0.15044608E-02 0.80168646E-05 -0.66282287E-08 0.17562011E-11 0.15666541E+05 0.26956889E+01 PH3

 $\begin{array}{l} 0.17400687E+01\ 0.10091725E-01-0.53111977E-05\ 0.13274015E-08-0.12860052E-12\\ 0.18498737E+020.13605277E+020.31738113E+010.23255312E-020.90325372E-05\\ -0.98058586E-080.29938095E-11-0.15459092E+03\ 0.72261132E+01\\ PH2SIH3 \end{array}$

0.57746754E+01 0.16443327E-01-0.87791891E-05 0.22242549E-08-0.21847862E-12 0.18691263E+04-0.43024180E+01 0.13793247E+01 0.32249198E-01-0.32077909E-04 0.18606620E-07-0.47294991E-11 0.29349786E+04 0.17570614E+02 PH3SIH2

0.55977176E+01 0.16711918E-01-0.89711059E-05 0.22868450E-08-0.22596871E-12 0.19895800E+05-0.24024293E+01 0.30988665E+01 0.24093612E-01-0.17761936E-04 0.74781463E-08-0.15194120E-11 0.20595284E+05 0.10466002E+02 PH2SIH2

0.61938267E+01 0.11749686E-01-0.60301377E-05 0.14674155E-08-0.13858742E-12 0.21298701E+05-0.48992577E+01 0.24448967E+01 0.25832340E-01-0.28051226E-04 0.17856594E-07-0.48585304E-11 0.22193995E+05 0.13642869E+02 PH2SIH

0.58296168E+01 0.85104188E-02-0.43359878E-05 0.10487613E-08-0.98469928E-13 0.27547702E+05-0.37300542E+01 0.29865869E+01 0.19747821E-01-0.22699009E-04 0.15118785E-07-0.42143495E-11 0.28199219E+05 0.10192470E+02 PH/281

0.48411597E+01 0.62423109E-02-0.32807976E-05 0.82488906E-09-0.80856425E-13 0.38608081E+05 0.25162469E+01 0.33234908E+01 0.13095582E-01-0.15492257E-04 0.10596951E-07-0.29848094E-11 0.38907656E+05 0.97212983E+01 PHSIH3 PHSIH3

0.58624570E+01 0.12665906E-01-0.67888673E-05 0.17241016E-08-0.16950300E-12 0.17961190E+05-0.33634990E+01 0.22791585E+01 0.26012526E-01-0.27166442E-04 0.16452185E-07-0.42977709E-11 0.18807840E+05 0.14354415E+02 P-SIH3

0.54188111E+01 0.94550220E-02-0.50266430E-05 0.12616618E-08-0.12242409E-12 0.46915647E+05-0.21005051E+01 0.22064631E+01 0.20820916E-01-0.21491471E-04 0.12671748E-07-0.32332217E-11 0.47703376E+05 0.13930870E+02 P-SIH3

0.52694607E+01 0.96754139E-02-0.51733778E-05 0.13089297E-08-0.12825772E-12 0.30840866E+05-0.14755917E+01 0.18431843E+01 0.21953520E-01-0.23093973E-04 0.13747093E-07-0.35097996E-11 0.31668809E+05 0.15574220E+02

PHSIH2

0.56714705E+01 0.89028654E-02-0.46527360E-05 0.11566613E-08-0.11176266E-12 0.18793064E+05-0.36613194E+01 0.17240997E+01 0.25113829E-01-0.31467153E-04 PHSIH2

0.59287190E+01 0.87356225E-02-0.46565862E-05 0.11828377E-08-0.11685561E-12 0.32966518E+05-0.28951437E+01 0.31692030E+01 0.20035958E-01-0.23512385E-04 0.15741808E-07-0.43743014E-11 0.33573357E+05 0.10506319E+02

^a These fits can be used with the CHEMKIN package of software.¹¹

(H₃Si-SiH₃) despite the fact that the Si-P interaction should have an ionic contribution. The analogous isovalent Si-N bond gives a BDE of 439 kJ/mol or about 1.5 times the BDE of the Si-P bond. The computed Si-P single, double, and triple bond distances are 2.30, 2.06, and 1.92 Å, respectively. The corresponding Mulliken charge analysis indicates that the Si-P single bond is about as ionic as a Si-H bond. However, as the multiple bond character increases, the Si center becomes progressively less positively charged and the P center less negatively charged such that the net effect is to make the bond less ionic. Bond dissociation energies for Si-P multiple bonds indicate a low multiple bond order as expected for silicon. The BDE of ¹HP=SiH₂ to form the most stable products (³HP + ¹SiH₂) only requires 344 kJ/mol and would necessitate curve crossing, while the adiabatic surface leading to singlet states requires 502 kJ/mol. Singlet-triplet splitting in HP=SiH₂ was only 122 kJ/mol, implying a very weak π bond contribution. The triple bond in P-SiH is also relatively weak at 396 kJ/mol and essentially degenerate in energy with its doubly bonded isomer HP-Si, which has a bond length slightly longer (2.04 vs 1.92 Å) than that of P-SiH. This degeneracy in energy is surprising, since from a valence bond view one expects the P-SiH isomer to be more stable than HP-Si. The P-SiH molecule is linear, indicating triple bond character, while the HP-Si isomer has a bond angle of only 750°, which would

P-SIH2

0.54522761E+01 0.54722954E-02-0.28267596E-05 0.69467804E-09-0.66492143E-13 0.37599821E+05-0.87037530E+00 0.32871783E+01 0.14426181E-01-0.17891515E-04 0.12392106E-07-0.34987023E-11 0.38072028E+05 0.96233647E+01 PHS1H PHS1H

0.53897940E+01 0.56028674E-02-0.29416268E-05 0.73657010E-09-0.71757620E-13 0.38080475E+05-0.62039843E+00 0.30072673E+01 0.16102234E-01-0.21222634E-04 0.15103389E-07-0.42852629E-11 0.38558375E+05 0.10743468E+02 P-SIH

0.48148578E+01 0.25982013E-02-0.13351930E-05 0.32927239E-09-0.31891512E-13 0.35155630E+05 0.36784244E-01 0.40535314E+01 0.56646212E-02-0.64451574E-05 0.43054061E-08-0.12072979E-11 0.35328263E+05 0.37530200E+01 P-SIH

0.46821781E+01 0.30046520E-02-0.16698662E-05 0.43863072E-09-0.44449499E-13 0.54238121E+05 0.34648458E+01 0.33503537E+01 0.86229384E-02-0.11087862E-04 0.76351014E-08-0.21146756E-11 0.54515251E+05 0.98743920E+01 PH2S1 PH2S1

0.48411597E+01 0.62423109E-02-0.32807976E-05 0.82488906E-09-0.80856425E-13 0.38608081E+05 0.25162469E+01 0.33234908E+01 0.13095582E-01-0.15492257E-04 0.10596951E-07-0.29848094E-11 0.38907656E+05 0.97212983E+01 PHSI

0.48883561E+01 0.26121572E-02-0.13962448E-05 0.35572372E-09-0.35224768E-13 0.33741612E+05 0.25271264E+01 0.45487208E+01 0.40434582E-02-0.40943290E-05 0.27333436E-08-0.81025780E-12 0.33825695E+05 0.41923357E+01 PHSI

0.45988368E+01 0.29132934E-02-0.15251227E-05 0.37916173E-09-0.36483084E-13 0.59725288E+05 0.42668944E+01 0.35307246E+01 0.77901189E-02-0.10114821E-04 0.71154457E-08-0.19959498E-11 0.59926195E+05 0.93077626E+01 P-SI

0.42317086E+01 0.30871502E-03-0.13027386E-06 0.20906734E-10-0.68700095E-15 0.45424554E+05 0.32997315E+01 0.28705045E+01 0.56926977E-02-0.83084440E-05 0.56323608E-08-0.14585357E-11 0.45708594E+05 0.99017388E+01 SH3PHSH3

0.95200010E+01 0.23249421E-01-0.12530571E-04 0.31989525E-08-0.31620432E-12 0.28893987E+04-0.20446285E+02 0.11566774E+01 0.54324341E-01-0.59337766E-04 0.36391642E-07-0.94425295E-11 0.48457735E+04 0.20872532E+02 PH2S1H22PH2

0.92038017E+01 0.19197172E-01-0.10025384E-04 0.24870209E-08-0.23954635E-12 0.52997109E+03-0.18305856E+02 0.22497758E+01 0.46056646E-01-0.52103502E-04 0.33297604E-07-0.89040900E-11 0.21114996E+04 0.15807294E+02 C_S12H4PH2

0.99498965E+01 0.14364696E-01-0.73150810E-05 0.17644415E-08-0.16510427E-12 0.16486002E+05-0.24860988E+02 0.79066904E+00 0.51554351E-01-0.67932970E-04 0.47298881E-07-0.13147883E-10 0.18470583E+05 0.19596793E+02

C_SI2H4P2H

0.12389566E+02 0.19206459E-01-0.10137223E-04 0.25399320E-08-0.24702705E-12 0.49829009E+04-0.35685598E+02 0.19756769E+00 0.68795973E-01-0.90253402E-04 0.61896621E-07-0.16925972E-10 0.75836112E+04 0.23387917E+02 CY SIPHSI

0.75934391E+01 0.27031430E-02-0.13059680E-05 0.30116059E-09-0.27174506E-13 0.48490043E+05-0.91110117E+01 0.42557954E+01 0.17551523E-01-0.26921673E-04 PH2SIH2SIH

0.98899588E+01 0.22452839E-01-0.11931503E-04 0.30053522E-08-0.29336058E-12 0.52867670E+04-0.22058300E+02 0.19160508E+01 0.52126200E-01-0.57028869E-04 0.35393904E-07-0.93146984E-11 0.71646510E+04 0.17359022E+02

not indicate a strong bridge bond character as is known for HSi-SiH, where the Si–Si–H bond angle is about 49°. On the other hand, charge separation between phosphorus and silicon is greater in HP-Si owing to the higher electronegativity of H relative to Si. This increased ionicity in HP-Si combined with the fact that natural bond order analysis indicates that the p orbitals in phosphorus are less populated in the triply bonded case (presumably due to the electron-withdrawing nature of H when bonded to silicon) is sufficient to make the triple bond not as favored as one might expect. In terms of bond order (based on the most stable products), the double and triple bonds have orders of 1.15 and 1.34, respectively. For radicals the Si-H bond is actually weaker than the corresponding P-H bond, opposite to that seen for the closed-shell species. The cyclic structures presented are possible species that might form under CVD conditions as precursors to particle formation/ contamination.

Conclusions

Ab initio computation of the electronic structure of molecules in the Si-P-H system, combined with a bond additivity correction procedure has been used to obtain a set of selfconsistent thermochemical data. The Si-P single bond was found to be weaker than the Si-Si bond, and multiple bonds indicated weak π bond character. The results provide the basis for the construction of detailed chemical kinetic models for the interaction of silicon-phosphorus species in the gas phase during thermal deposition of doped silicon from silane and phosphine.

References and Notes

(1) Handbook of Thin-Film Deposition Processes and Techniques; Schuergraf, K. K., Ed.; Noyes Publications: NJ, 1988.

(2) (a) Melius, C. F.; Binkley, J. S. Symp. (Int.) Combust. [Proc.] 1986, 21, 1953.
(b) Melius, C. F. Thermochemistry of Hydrocarbon Intermediates in Combustion: Application of the BAC-MP4 Method. Chemistry and Physics of Energetic Materials; Bulusu, S. N., Ed.; Kluwer Academic Publishers: Dorderecht, 1990; Vol. 309, p 21. (c) Ho, P.; Melius, C. F. J. Phys. Chem. 1995, 99, 2166. (d) Zachariah, M. R.; Tsang, W. J. Phys. Chem. 1995, 99, 5308. Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R. J. Phys. Chem. 1995, 99, 15285.

(3) Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.; DeFrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J.; Topiol, S.; Pople, J. A. *Gaussian 90*; Gaussian Inc.: Pittsburgh, PA, 1990.

(4) Zachariah, M. R.; Westmoreland, P. R.; Burgess, D. R., Jr.; Tsang, W.; Melius, C. F. J. Phys. Chem. **1996**, 100, 8737.

(5) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.

(6) Chase, M. W., Jr., Davies, C. A., Downey, Jr., Frurip, D. J., McDonald, R. A., Syverud, A. N., Eds. *JANAF Thermochemical Tables*, 3rd ed.; American Chemical Society, American Institute of Physics: New York, 1985.

(7) Gurvich, L., Veyts, I. V., Alcock, C. B., Eds. *Thermodynamic Properties of Individual Substances*; Hemisphere: New York, 1991.

(8) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.

(9) Nyden, M. R.; Petersson, G. A. J. Chem. Phys. **1981**, 75, 1843. (10) Gordon, S.; McBride, J. B. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. NTIS Report N78-17724; National Technical Information Service, 1976.

(11) Kee, R. J.; Rupley, F. M.; Miller, J. A. A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Sandia National Laboratories Report SAND89-8009; Sandia National Laboratories: Albuquerque, NM, 1989.