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The Effect of Orientation on the Mobility and Dynamic
Shape Factor of Charged Axially Symmetric Particles
in an Electric Field

Mingdong Li,1,2 George W. Mulholland,1,2 and Michael R. Zachariah1,2

1University of Maryland, College Park, Maryland, USA
2National Institute of Standards and Technology, Gaithersburg, Maryland, USA

The mobility of a nonspherical particle is a function of both
particle shape and orientation. Thus, unlike spherical particles,
the mobility, through its orientation, depends on the magnitude of
the electric field. In this work, we develop a general theory, based
on an extension of the work of Happel and Brenner (1965), for
the orientation-averaged mobility applicable to any axially sym-
metric particle for which the friction tensor and the polarization
energy are known. By using a Boltzmann probability distribution
for the orientation, we employ a tensor formulation for comput-
ing the orientation-averaged mobility rather than a scalar analysis
previously employed by Kim et al. (2007) for nanowires. The re-
sulting equation for the average electrical mobility is much simpler
than the expression based on the scalar approach, and can be ap-
plied to any axially symmetric structures such as rods, ellipsoids,
and touching spheres. The theory is applied to the specific case of
nanowires and the experimental results on the mobility of carbon
nanotubes (CNT). A set of working formulas of additional mobility
expressions for nanorods and prolate spheroids in the free molecu-
lar, continuum, and transition regimes are also presented. Finally,
we examine the expression of dynamic shape factor common in the
literature, and propose a clearer definition based on the tensor ap-
proach. Mathematica codes for the electrical mobility evaluations
for five cases are provided in the Supplemental Information.

[Supplementary materials are available for this article. Go to
the publisher’s online edition of Aerosol Science and Technology
to view the free supplementary files.]

1. INTRODUCTION
The differential mobility analyzer (DMA) is widely used for

measuring the size distribution of nanoparticles in the aerosol
phase (Kim et al. 2007; Li et al. 2011a, b). For a spherical parti-
cle, the electrical mobility diameter is equivalent to its geomet-
ric diameter. However, for nonspherical particles, the measured
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Mechanical Engineering, University of Maryland, 2125 Martin Hall,
College Park, MD 20742, USA. E-mail: mrz@umd.edu

electrical mobility diameter is that for a sphere of equivalent
mobility. This can be complex, because the mobility becomes a
function of particle shape and orientation. The orientation and
thus mobility, in turn, depend on the magnitude of the electric
field, which poses an additional complexity to predicting the
mobility.

There have been several studies on the effect of the electric
field on the orientation of nonspherical particles, whose mo-
bility diameter is less than 0.5 µm. The most widely studied
particles are doublets of polystyrene latex (PSL) spheres with
primary sphere sizes in the range of 100 nm to 400 m (Kousaka
et al. 1996; Zelenyuk and Imre 2007). Shin et al. (2010) studied
the alignment of silver agglomerates with up to about 1000 pri-
mary spheres of diameter ∼20 nm. Several investigators have
observed alignment in nanowires including Moisala et al. (2005)
for single-walled carbon nanotubes (SWCNTs), Song et al.
(2005) for electrospray-generated gold nanorod particles, and
Kim et al. (2007) for multiwalled CNTs.

The focus of this article is on the development of a general
theory to compute the electrical mobility of axially symmetric
particles, which includes doublets of spheres and nanowires.
Kim et al. (2007) developed a theory for calculating the
orientation-averaged mobility of charged nanowires in an elec-
tric field based on a Boltzmann probability distribution for
nanowire orientation. As an application of this theory, the
lengths of monodisperse carbon nanowires were expressed as a
function of the mobility diameter of the nanowires. However,
there are some issues in Kim et al.’s approach. First, Kim et
al. calculated the orientation-averaged mobility by using the
friction coefficient expressed in the scalar form, which more
rigorously should be expressed in a general tensor form. Sec-
ond, the polarization energy for an ellipsoid particle was a factor
of “2π” higher than the correct value.

In this work, we develop a more robust theory of orientation-
averaged mobility using the tensor form of drag force and the
general expression for the polarization energy for an axially
symmetric particle. We compare the results of our theory with
the experimental mobility data for CNTs in Kim et al.’s (2007)
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1036 M. LI ET AL.

study. While our validation is based on experimental data for
nanowires, our theory is generally applicable to any axially
symmetric particle for which the friction tensor and the polar-
ization energy are known, and is an extension of the Happel
and Brenner (1965) theory for the sedimentation of nonskew
objects to include a Boltzmann probability distribution for the
orientation. We also discuss the expression of dynamic shape
factor common in the literature, and propose a clearer definition.

2. THEORY

2.1. Orientation-Averaged Mobility for Axially
Symmetric Particles

The mobility of a charged particle within a DMA is deter-
mined through a balance of the electrostatic (Fe) and drag force
(Fdrag) along the electric field direction (radial for a cylindrical
DMA). In a cylindrical DMA, for example, both the magnitude
and direction of electric field vary radially. However, so long as
the characteristic time for a particle to reach its asymptotic drift
velocity is small compared with the time over which there is a
significant change in the electric field, we can assume that the
particle follows the varying electric field instantaneously.

For axially symmetric particles, the drag force is (Happel and
Brenner 1965)

⇀

F drag = −K̂ · ⇀

V d, [1]

where K̂ is the friction coefficient tensor and
⇀

V d is the drift ve-
locity of the particle. The particle will be undergoing Brownian
rotation. We assume that the Brownian rotation is slow com-
pared with the translational relaxation time, which is valid for
particles in the continuum regime, most particles in the transi-
tion regime, and high aspect ratio particles in the free molecular
regime. The detailed discussion will be described in a sepa-
rate manuscript. For this quasi-equilibrium, the drag force is
balanced by the electric force

K̂ · ⇀

V d = q
⇀

E, [2]

where q is the free charge on the particle. Multiplying both sides
of Equation (2) by K̂−1,

⇀

V d = qK̂−1 · ⇀

E. [3]

The quantity K̂ is expressed in terms of the body-fixed coordi-
nate system (�i ′, �j ′, �k′) parallel to the three principal axes of the
particle, and the direction of the electric field is expressed in
terms of the unit vectors fixed in space (�i, �j, �k). The unit vector
⇀

k is chosen along the electric field direction (radial) and
⇀

k′ is
chosen parallel to the axis of an axially symmetric particle. The
angle between

⇀

k and
⇀

k′ is θ .

Then the tensor K̂can be expressed as the dyadic products of
the unit vector:

K̂ = K1
⇀

i ′
⇀

i ′ +K2
⇀

j ′⇀j ′ +K3
⇀

k′⇀k′, [4]

where K1, K2, and K3 are the three principal components. Since
K̂ is a diagonal matrix, the inverse of K̂ is easily computed:

K̂−1 = K−1
1

⇀

i ′
⇀

i ′ +K−1
2

⇀

j ′⇀j ′ +K−1
3

⇀

k′⇀k′, [5]
⇀

E = E
⇀

k. [6]

From Equations (3), (5), and (6), one obtains

⇀

V d = qE
(
K−1

1

⇀

i ′
⇀

i ′ · ⇀k +K−1
2

⇀

j ′⇀j ′ · ⇀k +K−1
3

⇀

k′⇀k′ · ⇀k
)
. [7]

For axially symmetric particles, K1 = K2 = K⊥, where K⊥ is
the principal component of the friction coefficient tensor per-
pendicular to the axial direction, andK3 = K‖, whereK‖ is the
component parallel to the axial direction. In general, the drift
velocity,

⇀

V d , of nonspherical particles is orientation dependent
so that there will be components other than in the

⇀

k direction
(the electric field direction).

For a particle population, the axial orientation of particles will
show a distribution. If the particles are small enough, over the
time scale of interest, the rotational Brownian motion will result
in a steady-state distribution of the orientation, i.e., Boltzmann
angular distribution.

The orientation-averaged velocity 〈 �Vd〉 is expressed in terms
of the Euler angles θ , ϕ , ψ , which relate body-fixed coordinate
system (�i ′, �j ′, �k′) to the space-fixed coordinates (�i, �j, �k) (Gold-
stein et al. 2002), and the orientational probability function f (θ ):

〈 �Vd〉 = 1

4π2

∫ ∫ ∫
�Vd (ψ, φ, θ )f (θ ) sin θdψdφdθ, [8]

where the integration for ψ and ϕ are from 0 to 2π and for θ
is from 0 to π . This method applies to nonspherical particles
with orientation probability dependent on only θ . Expressing
the unit vector dyadic products in Equation (7) in terms of the
Euler angles, for an axially symmetric particle, one obtains the
following expression for the average drift velocity:

〈 �Vd〉 = qE
[
K−1

⊥ + (
K−1

‖ −K−1
⊥

)
< cos2 θ >

] ⇀

k, [9]

where

< cos2 θ > =
∫ π

0
cos2 θf (θ ) sin θdθ, is the orientationally

averaged cos2(θ ), [10]

and 1
4π2

∫∫∫
f (θ ) sin θdψdφdθ = 1.
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MOBILITY OF AXIALLY SYMMETRIC PARTICLES 1037

We note that the average velocity has only a single component
in the �k direction (the electric field direction).

If we define the average electrical mobility as Z̄p = 〈Vd〉 /E,
then a general expression for the average electrical mobility is

Zp = q
[
K−1

⊥ + (K−1
‖ −K−1

⊥ ) <cos2 θ>
]
. [11]

Equation (11) provides a general expression for the average
mobility of axisymmetric particles, whose evaluation requires
a knowledge of K⊥ and K‖, which depend on drag model spe-
cific to the geometry of interest (e.g., ellipsoid, rod, doublets of
spheres), and the orientation average value <cos2 θ>. The cal-
culation of (K⊥,K‖) and<cos2 θ> is discussed in the following
sections (Sections 2.2 and 2.3). In what follows, we evaluate and
validate Equation (11) for a nanowire based on prior experimen-
tal measurements on carbon nanotubes (CNTs; Kim et al. 2007),
and then extend the analysis to other axisymmetric shapes.

The expression of electrical mobility mentioned earlier is also
related to the definition of dynamic shape factor for nonspherical
particles, which is discussed in Section 3.3.

2.2. Drag Force, Fdrag, and Expression of K ⊥ and K ‖
The values of K⊥ and K‖ depend on the expression of drag

force in Equation (1), which is dependent on particle shape and
the flow regime appropriate for the particle.

In this work, we focus on the example of nanowires, for
which we have experimental results for comparison. We will
also compare our new result with the work of Kim et al. (2007).

2.2.1. Nanorod in Free Molecular Regime
In the free molecular regime, the drag force for a cylindrical

particle (length Lf, diameter df) with hemispherical ends was
developed by Dahneke (1973b),

Ffree−molecular = −πηd
2
f Vr

2λ

[(
β1f + πf

6
+ 4

3

)

+β1

(
2 − 6 − π

4
f

)
sin2 θ

]
, [12]

where η is the gas viscosity, λ is the mean free path of gas, f is
the momentum accommodation coefficient, and β1 is the aspect
ratio for rod defined by Lf/df. For parallel and perpendicular
orientations, Equation (1) is simplified to F‖ = K‖V‖ and F⊥ =
K⊥V⊥, while F‖ and F⊥ can be obtained from Equation (12)
with θ = 0 and θ = π /2, respectively. Then,

K‖ = πηd2
f

2λ

(
β1f + πf

6
+ 4

3

)
[13]

and

K⊥ = πηd2
f

2λ

[
β1

(
2 + π − 2

4
f

)
+ πf

6
+ 4

3

]
. [14]

2.2.2. Other Expressions for K⊥ and K‖
Expressions for K⊥ and K‖ for nanorods and prolate

spheroids in the free molecular, continuum, and transi-
tion regimes are given in the Appendix (Section A1), and
can be applied to obtain the mobility through Equation
(11).

2.3. Orientation Distribution f (�) and Expression of
<cos2 �>

The probability that the angle between the axis of an axi-
ally symmetric particle and the electric field direction lies in
the interval (θ , θ + dθ ) due to Brownian motion, following
Boltzmann’s law (Fuchs 1964),

f (θ ) = e−U/kT∫ π
0 e

−U/kT sin θdθ
, [15]

where
∫ π

0 f (θ ) sin θdθ = 1, and U is the interaction energy be-
tween the particle and the external electric field. The interaction
energy may be from a permanent dipole (Fredericq and Houssier
1973), a free charge on the particle, or an induced dipole due
to polarization. In this work, we only consider the energy from
the free charge and the energy due to polarization. Energies are
expressed in SI units.

2.3.1. Evaluation of the Interaction Energy, U, for Various
Situations

2.3.1.1. Interaction energy from the free charge. The in-
teraction energy from the free charge depends on where the
charge is located on the particle. For example, the free charge
may stay at the ends of the particle, or be uniformly distributed
along the entire surface. In this work, we only provide the ex-
pressions of interaction energy from the free charge for con-
ducting nanorod and conducting prolate spheroid.

• Conducting nanorod

For conducting nanorod, using the same assumption as
in Kim et al. (2007) that the free charge can immedi-
ately respond and freely move along the CNT surface to
the end of the nanowire closest to the lowest voltage elec-
trode, we obtain the electric energy from free charge q (θ
= π /2 as the reference position), which can be represented
as

Ue =

⎡
⎢⎢⎣

−1

2
qLfE cos θ, 0 ≤ θ < π/2,

−1

2
qLfE cos(π − θ ), π/2 ≤ θ ≤ π.

[16]
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1038 M. LI ET AL.

• Conducting prolate spheroid

The electric energy can be obtained from (16) by replacing
Lf with the major axis 2a.

2.3.1.2. Interaction energy from an induced dipole for an
axially symmetric particle. The polarization energy for a par-
ticle with polarizability α̂ is given by (Böttcher and Belle 1973)

Up = −1

2

⇀

E · α̂ · ⇀

E. [17]

For an axially symmetric particle, Equation (17) becomes

Up = −1

2
E2

(
α⊥ sin2 θ + α‖ cos2 θ

)
= −1

2
E2 cos2 θ (α‖ − α⊥) − 1

2
E2α⊥, [18]

where α⊥ is the principal component of polarizability perpen-
dicular to the axial direction and α‖ is the component parallel
to the axial direction. For the orientational probability governed
by Boltzmann’s law, only the relative energy based on angle
is relevant, so any term in the energy expression not related to
angle can be neglected. Thus, Equation (18) can be expressed
as

Up = −1

2
E2 cos2 θ (α‖ − α⊥). [19]

2.3.1.3. Interaction energy from the free charge and an
induced dipole for a nanorod or prolate spheroid assuming a
conducting surface. From Equations (16) and (19), the total
energy is given by

U = Ue + Up

=

⎡
⎢⎢⎣

−1

2
qlE cos θ − 1

2
E2 cos2 θ(α‖ − α⊥), 0 ≤ θ < π/2,

−1

2
qlE cos(π − θ) − 1

2
E2 cos2 θ(α‖ − α⊥), π/2 ≤ θ ≤ π,

[20]

where l = Lf for nanorod and l = 2a for prolate spheroid.
We approximate the polarization energy of a nanorod with

that of a prolate spheroid with the same volume and the same
aspect ratio as the rod. For a prolate spheroid with relative per-
mittivity εk , aspect ratio β2 (major semiaxis a; minor semiaxis
b; β2 = a/b) and volume v, the two principal components of
polarizability α‖ and α⊥ are expressed in the Appendix (Section
A2). There is an error in the expression of the polarization en-
ergy for an ellipsoid in Kim et al. (2007). Their value is a factor
of 2π times larger than the correct value given here. A similar
factor error also occurs in Fuchs (1964), where a 1/4π factor is
missing for the polarization energy for an ellipsoid in Gaussian
units.

2.3.2. Evaluation of <cos2 θ>

Using Equations (10), (15), and (20), we calculate<cos2 θ>

for four cases.
2.3.2.1. Fully random. When the electric field goes to

zero, the orientation of particles is random and <cos2 θ> =
1/3.

2.3.2.2. Fully aligned. When the electric field goes to in-
finity, the particles are fully aligned and <cos2 θ> = 1.

2.3.2.3. Free charge and induced dipole orientation for a
nanorod or prolate spheroid assuming a conducting surface.
Assuming that the free charge can immediately respond, and
freely move along the surface of a particle to the end of the ax-
ially symmetric particle closest to the lowest voltage electrode,
and the total interaction energy follows Equation (20), then

<cos2 θ> =
∫ π

0 cos2 θe−U/kT sin θdθ∫ π
0 e

−U/kT sin θdθ
=

∫ 1
0 x

2eµx+δx
2
dx∫ 1

0 e
µx+δx2

dx

= 1

2δ

⎡
⎢⎢⎣ 2e

µ2

4δ

[(
− µ

2
√
δ

+ √
δ
)
eµ+δ + µ

2
√
δ

]
√
π

[
Erfi

(
µ

2
√
δ

+
√
δ

)
− Erfi

(
µ

2
√
δ

)]

+ µ2

2δ
− 1

]
, [21]

where x = cosθ ,

µ = qLfE

2kT
for nanorod and µ = aqE

kT
for prolate spheroid,

δ = (α‖ − α⊥)E2

2kT
,

and Erf i (z) = 2√
π

∫ z

0
et

2
dt , the imaginary error function.

2.3.2.4. Pure induced dipole orientation for an axially sym-
metric particle. If we only consider the induced dipole energy,

<cos2 θ> =
∫ π

0 cos2 θe−Up/kT sin θdθ∫ π
0 e

−Up/kT sin θdθ
=

∫ 1
−1 x

2eδx
2
dx∫ 1

−1 e
δx2
dx

= 1

2δ

[
2
√
δeδ√

πErf i(
√
δ)

− 1

]
. [22]

2.4. Voltage–Shape Information Relationship in a DMA
Measurement (Step Mode)

A knowledge of the orientation-averaged mobility, e.g.,
Equation (11), can be used to determine the voltage at which an
axially symmetric particle can be detected in a DMA measure-
ment. Following Kim et al. (2007), the detection voltage (Ve)
and shape information (hidden in orientation-averaged mobility
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MOBILITY OF AXIALLY SYMMETRIC PARTICLES 1039

Zp) relationship can be obtained as

π (r2
out − r2

in)Ld
Qsh +Qa

= Ve

ln(rout/rin)

∫ Ein

Ea

dE

Zp · E3
, [23]

where

rin is the radius of inner electrode of DMA,
rout is the radius of outer electrode of DMA,
Qsh is the sheath flow rate,
Qa is the aerosol flow rate,
Ld is the length of DMA electrode,

Ein = Ve

rin ln(rout/rin)
,

Ea = Ve

ra ln(rout/rin)
,

and

ra = Qshr
2
out +Qar

2
in

Qsh +Qa

.

The averaged mobility, Zp, which is a function of electric field
and contains the shape information, is given by Equation (11)
for axially symmetric particles such as a nanowire.

The derivation of Equation (23) is given in the Appendix
(Section A3).

2.5. Evaluation of Mobility for Special Cases
Equation (11), given again next, is the general form for the

orientation-averaged mobility:

Zp = q[K−1
⊥ + (K−1

‖ −K−1
⊥ ) <cos2 θ>]. [11]

There are several advantages of this formulation over our
previous analysis (Kim et al. 2007):

• We employ a more rigorous evaluation of the friction
coefficient by using a tensor form.

• We are now able to find a closed-form expression that
is much easier to evaluate.

• Equation (11) is a general expression that can be ap-
plied to any axially symmetric shape, such as an el-
lipsoid or a doublet of spheres, assuming that one has
expressions forK⊥ andK‖, and the interaction energy.

In the following, we provide six cases of mobility evaluation
for nanorod and prolate spheroids using Equation (11). The
<cos2 θ> in Equation (11) can be evaluated based on Equation
(10) generally, and for four specific conditions, it is given in
Section 2.3.2. Note that the polarization energy for an ellipsoid
contained in the expression for <cos2 θ> corrects for the 2π
error in Kim et al. (2007). The cases are as follows:

1. Case 1: Nanowire with semispherical ends in free molecular
regime: For the specifics of a nanowire with semispherical
ends, the averaged electrical mobility in the free molecular
regime is evaluated based on Equation (11), where K⊥ and
K‖ are given in Equations (13) and (14).

2. Case 2: Nanowire with flat ends in free molecular regime:
The expressions ofK⊥ andK‖ required in Equation (11) are
given in the Appendix in Equations (A1) and (A2).

3. Case 3: Prolate spheroids in free molecular regime: The
expressions of K⊥ and K‖ are given in the Appendix in
Equations (A3) and (A4).

4. Case 4: Slender rod in continuum regime: The expressions
of K⊥ and K‖ are given in the Appendix in Equations (A5)
and (A6).

5. Case 5: Prolate spheroids in continuum regime: The expres-
sions of K⊥ and K‖ are given in the Appendix in Equations
(A7) and (A8).

6. Case 6: Slender rod and prolate spheroids in transition
regime: The mobility expressions for nanorods and prolate
spheroids in the transition regime can be evaluated based on
Equation (11) and the expressions of K⊥ and K‖ are given
in the Appendix (Section A1.3).

The Mathematica codes for the electrical mobility evalua-
tions for the above five cases (Cases 1–5) are provided in the
Supplemental Information.

3. RESULTS AND DISCUSSIONS
In this section, we compare the results for the electrical mo-

bility of nanowires as a function of electric field with our pre-
vious theoretical treatment as well as with experiments on the
mobility of CNTs (Kim et al. 2007). We use the same values
as in Kim et al. for the relative permittivity of CNT, εk = ∞,
and the momentum accommodation f = 0.9. At the end of this
section, we also discuss the expression of dynamic shape factor
common in the literature, and propose a clearer definition and
an effective dynamic shape factor for a particle population.

3.1. Electrical Mobility as a Function of Applied Electric
Field

In Figure 1, we plot normalized (relative to random orienta-
tion) electrical mobility versus applied electric field for a wide
range of aspect ratios, β, with diameter df = 15 nm in the free
molecular regime based on our theory (Case 1 in Section 2.5)
and using our previous formulation (Kim et al. 2007). At low
field strengths, the thermal energy dominates the aligning en-
ergy, and Brownian dynamics result in a random orientation. As
the electric field increases, the wire will tend to align resulting in
a larger electrical mobility. Both theories show a clear increase
in mobility observed with increasing field strength for all βs
and the onset of alignment occurring at lower field strength with
increasing β. However, in all cases, the normalized electrical
mobility based on Kim et al. (2007) is substantially higher. This
discrepancy of asymptotic behavior at high field is due to the
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1040 M. LI ET AL.

FIG. 1. Theoretical calculations of our theory and Kim et al.’s theory on the
effect of the electric field on the scaled mobility, (Zp – Zp ,random)/Zp,random, for
nanowires with diameter df = 15 nm and various aspect ratios in the free molec-
ular regime (30,000 v/cm is the air breakdown limit). (Color figure available
online.)

scalar form of the friction coefficient used in Kim et al.’s theory
instead of a general tensor form used here.

3.2. Experimental Validation
In the work of Kim et al. (2007), CNTs were generated

with a fixed diameter df = 15 nm and a wide range of lengths
from 50 to 2000 nm. The CNTs were size selected by a DMA
and counted by a condensation particle counter (CPC). The
size-selecting voltages of DMA (detection voltage, Ve) were
chosen in a range from 465 to 4962 volts, with the corresponding
equivalent spherical diameters (Dm) from 50 to 150 nm. The
selected CNTs were also electrostatically deposited after the
DMA and their lengths were measured by transmission electron
microscopy (TEM) analysis.

The predicted length of those selected CNTs can be calcu-
lated based on Equation (23) and the averaged mobility given
in Case 1 for the free molecular regime or in Case 6 for the
transition regime. Equation (23) provides the relationship be-
tween the detection voltage (Ve) and the length of nanowire for
given diameter (df), which is hidden in the expression of average
electrical mobility provided in Case 1 or in Case 6. In Figure
2, we plot the theoretically predicted nanowire length using our
theory in both free molecular and transition regimes assuming
that a nanowire is randomly rotating, fully aligned, and aligned
by combined energy (free charge + polarization), as a function
of experimentally measured electrical mobility diameter (Dm),
which is basically derived from the detection voltage Ve by
assuming spherical particles.

The predicted lengths of CNT calculated earlier are com-
pared with the lengths measured by TEM analysis in Kim et al.
(2007) in the same figure. It is seen that the TEM experimental
results fall between the two limiting cases of random rotation
and fully aligned using Dahneke’s free molecular expression of

FIG. 2. Comparison of theoretically predicted nanowire length: curves are for
nanowires randomly rotating, fully aligned, and aligned by combined energy
(i.e., free charge + polarization), respectively, with the lengths measured by
TEM analysis in Kim et al. (2007), as a function of electrical mobility diameter
measured with DMA. The drag force expressions of rod in both free molecular
and transition regimes are used. (Color figure available online.)

drag force, and fall slightly lower than for random rotation at
small nanowire lengths using Dahneke’s transition expression of
drag force. The experimental data match the predicted behavior
of a randomly aligned nanowire for low mobility diameters, and
then tends toward the curve corresponding to the totally aligned
nanowires for the largest diameters. The data qualitatively fol-
low the predicted trends; however, there is a slight discrepancy
at small lengths using the transition drag force expression and
a discrepancy at large nanowire lengths in both regimes. These
discrepancies likely result from kinks and bends in the nan-
otubes, while the theory assumes a perfect rod-like structure.

Figure 3 presents the relative combined electrical energy
(i.e., free charge + polarization) in Equation (20) at θ = 0
to thermal energy as a function of experimentally measured
electrical mobility diameter (Dm). In the same figure, we draw
the dipole polarization energy (Up) normalized by the energy
from free charge (Ue) at θ = 0. It is seen that, for a mobility
diameter of 100 nm and larger, the aligning energy dominates
thermal energy. Also, for a mobility diameter of 100 nm and
larger, polarization energy starts to dominate the energy from
free charge, which means that orientation due to polarization is
the dominant effect.

3.3. Defining the Dynamic Shape Factor
In this section, we review the expression for the dynamic

shape factor found in the literature and suggest an alternative
definition. We also propose an effective dynamic shape factor
for a particle population.

For an axisymmetric particle, we can rewrite the drift ve-
locity,

⇀

V d , in Equation (7) in terms of the Euler angles θ , φ,

D
ow

nl
oa

de
d 

by
 [

N
IS

T
 N

at
io

na
l I

ns
tit

iu
te

s 
of

 S
ta

nd
ar

ds
 &

] 
at

 1
3:

12
 2

1 
Ju

ne
 2

01
2 



MOBILITY OF AXIALLY SYMMETRIC PARTICLES 1041

FIG. 3. The relative combined electrical energy (i.e., free charge + polariza-
tion) in Equation (20) at θ = 0 to thermal energy is shown as a function of
experimentally measured electrical mobility diameter (Dm). At each points, the
dipole polarization energy (Up) normalized by the energy from free charge (Ue)
at θ = 0 is plotted. The drag force expressions of rod in both free molecular
and transition regimes are used in computing the aspect ratios. (Color figure
available online.)

ψ :

⇀

V d = Vd,i
⇀

i + Vd,j
⇀

j + Vd,k
⇀

k, [24]

where

Vd,i = 1

2
qE sin 2θ sinφ

(
K−1

‖ −K−1
⊥

)
, [25]

Vd,j = −1

2
qE sin 2θ cosφ

(
K−1

‖ −K−1
⊥

)
, [26]

Vd,k = qE
[
K−1

⊥ + (
K−1

‖ −K−1
⊥

)
cos2 θ

]
. [27]

In general, the drift velocity,
⇀

V d , of nonspherical particles is
orientation dependent so that there will be components other

than in the
⇀

k direction (external force direction). For example,
Vd,i and Vd,j are not generally equal to 0 in Equations (25) and
(26) for an axisymmetric particle.

The widely used definition of dynamic shape factor, χ , is
that it is the ratio of the actual drag force of the nonspherical
particle to the drag force of a sphere having the same volume
and velocity as the nonspherical particle, as shown in Figure 4
(Cheng et al. 1988; Cheng 1991; Hinds 1999):

χ = Fdrag

3πηdeVd/Cc (de)
, [28]

where de is the equivalent volume diameter and Cc is the slip
correction factor.

Unfortunately, this definition assumes that the drift velocity
of the nonsphere is equivalent to a sphere, and can be treated
as a scalar. However, as we showed earlier, for nonspherical

FIG. 4. Direction of drag force and velocity for a nonspherical particle and
reference sphere used in the definition of dynamic shape factor are shown. The
drift velocity of the nonspherical particle has components other than just the
direction of the external force. The left side of this figure shows the basis of the
widely used shape factor, while the right side shows the basis of our proposed
definition of dynamic shape factor. (Color figure available online.)

particles, the drift velocity is a vector and has components other
than just the direction of the external force.

To correct this inconsistency, we propose replacing Vd in
Equation (28) with Vd,k, which is the drift velocity component
along the external force direction, as shown in Figure 4. Then
the corresponding dynamic shape factor, χ ′(θ ), is defined as

χ ′ = Fdrag

3πηdeVdk/Cc (de)
, [29]

i.e., χ ′(θ ), is defined as the ratio of the actual drag force of the
nonspherical particle to the drag force of a sphere having the
same volume as the nonsphere and the particle velocity, which
equals the drift velocity component along the external force
direction of the nonsphere.

For the polar axis of an axisymmetric particle making a fixed
angle, θ , with the direction of electric field, using Equations
(27) and (29) and considering (1) and Fdrag = qE, we obtain

χ ′(θ )−1 = 3πηde
Cc(de)

[
K−1

⊥ + (
K−1

‖ −K−1
⊥

)
cos2θ

]
= χ⊥′−1 + (

χ‖′−1 − χ⊥′−1
)

cos2 θ, [30]

where χ ′
‖ is the dynamic shape factor when particle travels

parallel to the axial direction, and χ ′
⊥ is the dynamic shape

factor when particle travels perpendicular to the axial direc-
tion. We note here that χ ′

‖ = χ‖ and χ ′
⊥ = χ⊥ because when

θ = 0 and π /2, based on Equations (25) and (26), Vd,i and Vd,j

vanish, and only a single component Vd,k exists. In this case,
Equation (28) is equivalent to Equation (29). This approach re-
moves the ambiguity in the value of the drift velocity found in
previous studies (Cheng et al. 1988; Cheng 1991; Song et al.
2005).
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1042 M. LI ET AL.

For axisymmetric particles with a distribution of orientations,
f (θ ), the average velocity has only a single component in the
external force direction. In this case, we can define an effec-
tive dynamic shape factor, χ eff, based on orientation-averaged
velocity as

χeff =
�Fdrag

3πηde
〈 �Vd 〉/Cc (de)

. [31]

Using Equations (31) and (9) and considering (1) and �Fdrag =
q �E, we obtain

χ−1
eff = χ−1

⊥ + (
χ−1

‖ − χ−1
⊥

)
<cos2 θ> . [32]

For applications where the particles are small, the Brownian
rotation will rapidly approach the Boltzmann distribution. This
is the case discussed in detail earlier for the nanowires.

In some applications, one is interested in the behavior of a
system of randomly oriented particles. For random orientation,
Equation (32) becomes

χ−1
eff = 1

3

(
2χ−1

⊥ + χ−1
‖

)
, [33]

which is widely reported (Happel and Brenner 1965; Dahneke
1973a; Cheng et al. 1988; Cheng 1991; Song et al. 2005). The
dynamic shape factor for random orientation given by Fuchs
(1964), which differs from Equation (33), is slightly in error as
was previously pointed out by Dahneke (1973a).

A general relationship between the average electrical mobil-
ity, Z̄p = 〈Vd〉 /E, and the effective dynamic shape factor can
also be obtained by using Equation (31) and �Fdrag = q �E:

Zp = q
Cc(de)

3πηde
χ−1

eff. [34]

For the case of a Boltzmann distribution, f (θ ) will be a function
of the field strength and will affect the values of both χeff and
Z̄p.

4. CONCLUSIONS
The approach of Happel and Brenner (1965) for computing

the average drift velocity for randomly oriented axially
symmetric particles has been extended to include a Boltzmann
probability distribution based on the orientation energy of the
particle. This theory uses a tensor formulation for computing
the orientation average mobility rather than a scalar analysis
previously employed by Kim et al. (2007) The resulting
equation for the average electrical mobility is much simpler
than the expression based on the scalar approach, and can be
applied to other axially symmetric structures such as ellipsoids
and touching spheres, provided that the friction tensor and the
orientation energy are known.

The theory was applied to the specific case of nanowires,
and the results are compared with the experimental results on
CNTs in Kim et al. (2007). Based on the tensor approach, we
have reevaluated the derivation of the dynamic shape factor to
clarify its meaning. Finally, we provide in the Supplemental
Information a set of programming codes for electrical mobility
evaluation for some specific cases.
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APPENDIX

A1. EXPRESSIONS FOR K ‖ AND K ⊥
The calculation of the average electrical mobility in Equation

(11) requires a knowledge of K‖ and K⊥, which depend on the
expression of drag force. In this appendix, we provide some
specific examples.

A1.1 In Free Molecular Regime
A1.1.1 Nanorod

In the free molecular regime, K‖ and K⊥ for a cylindrical
particle (length Lf, diameter df, aspect ratio β1 = Lf/df) with
hemispherical ends are given in Equations (13) and (14).

For a cylindrical particle with flat ends (Dahneke 1973b), we
obtain

K‖ = πηd2
f

2λ

[(
β1 + π

4
− 1

)
f + 2

]
, [A1]

K⊥ = πηd2
f

2λ

[(
π − 2

4
β1 + 1

2

)
f + 2β1

]
. [A2]

A1.1.2 Prolate Spheroids
For a prolate spheroid with semipolar axis, a, and semiequa-

torial axis, b, based on the drag force for a prolate spheroid in
the free molecular regime (Dahneke 1973b), we obtain

K‖ = πηβ2b
2

λ

×
{

2Apf + Cp

B2
p

[
B2
p(4−2f ) − 4+

(
3− π

2β2
2

)
f

]}
,

[A3]

K⊥ = πηβ2b
2

λ

×
{
Ap

[
4+

(π
2

−1
)
f

]
+Cp
B2
p

[
2+ 4B2

p+π−6

4
f

]}
,

[A4]

where

β2 = a

b
, Bp =

(
1 − 1

β2
2

)1/2

,

Ap = arcsinBp
Bp

, and Cp = 1

β2
− Ap.

A1.2 In Continuum Regime
A1.2.1 Nanorod

In the continuum regime, for slender cylinders (length Lf,
diameter df, β1 = Lf/df � 1) (Batchelor 1970), the components

of friction coefficient parallel and perpendicular to the radial
moving direction are

K‖ = 2πηLf

(
ε + 0.307ε2

1 − ε/2
+ 0.426ε3

)
[A5]

and

K⊥ = 4πηLf

(
ε + 0.307ε2

1 + ε/2
+ 0.119ε3

)
, [A6]

where ε = 1/ ln(2β1).

A1.2.2 Prolate Spheroids
With semipolar axis, a, semiequatorial axis, b, and aspect

ratio, β2 = a/b (Dahneke 1973a),

K‖ = 8πηbγ 2

2γ 2+1
γ

ln(γ + β2) − β2

[A7]

and

K⊥ = 16πηbγ 2

2γ 2−1
γ

ln(γ + β2) + β2

, [A8]

where γ = (β2
2 − 1)1/2.

A1.3 Transition Regime
For spherical particles in the transition regime, the drag force

in the continuum regime is reduced due to fluid molecular
slipping along the particle surface, and the Stokes equation is
modified by the Cunningham slip correction factor Cc:

Ftransition = Fcontinuum/Cc(dp), [A9]

Cc(dp) = 1 + 2λ

dp

[
A1 + A2 exp

(
− A3

2λ/dp

)]
, [A10]

where dp is the diameter of spherical particle, and A1 = 1.142,
A2 = 0.558, and A3 = 0.999 were given by Allen and Raabe
(1985) at room temperature and atmosphere pressure.

Similarly, for a nonspherical particle, Dahneke (1973c) pro-
posed an adjusted spherical diameter to calculate the drag force
in the transition regime:

Ftransition = Fcontinuum/Cc(da), [A11]

where da is the adjusted spherical diameter defined as Equation
(A11) matches asymptotically the drag forces given in both free
molecular and continuum equations when 2λ/da goes to either
infinity or zero, that is (Cheng 1991),

da = 2λ(A1 + A2)Ffree−molecular/Fcontinuum. [A12]

Once the drag force in the transition regime is known by
Equation (A11), K⊥ and K‖ can be obtained with θ = π /2 and
0, respectively.
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A2. EXPRESSION OF TWO PRINCIPAL COMPONENTS
OF POLARIZABILITY, �‖ AND �⊥, OF PROLATE
SPHERICAL PARTICLES

We approximate the polarization energy of a nanorod
with that of a prolate spheroid with the same volume and
the same aspect ratio as the rod. For a prolate spheroid with
relative permittivity εk , aspect ratio β2 (major semiaxis a,
minor semiaxis b, β2 = a/b), and volume v, the two principal
components of polarizability are defined as (Böttcher and Belle
1973; Sihvola 1999, 2007)

α‖ = ε0v
1

εk−1 + ζ1
[A13]

and

α⊥ = ε0v
1

εk−1 + ζ2
, [A14]

where ε0 is the permittivity of free space,

ζ1 = 1

β2
2 − 1

⎡
⎣ β2√

β2
2 − 1

ln

(
β2 +

√
β2

2 − 1

)
− 1

⎤
⎦ , [A15]

ζ2 = β2

2
(
β2

2 − 1
)

⎡
⎣β2 − 1√

β2
2 − 1

ln

(
β2 +

√
β2

2 − 1

)⎤
⎦ .
[A16]

For a slender cylinder, ζ1 is approximated to ln(2β2)/β2
2 and ζ2

approximated to 0.5.

A3. VOLTAGE–SHAPE INFORMATION RELATIONSHIP
FOR AXISYMMETRIC PARTICLES IN A DMA
MEASUREMENT

A knowledge of the orientation-averaged mobility, e.g.,
Equation (11), can be used to determine the DMA precipitation
time (tp), the time for the axisymmetric particles to travel from
the location of inlet slit to the location of outlet slit. Following

Kim et al. (2007), the precipitation time is

tp =
∫ ra

rin

dr

〈Vr〉 , [A17]

where

ra = Qshr
2
out +Qar

2
in

Qsh +Qa

,

rin is the radius of inner electrode of DMA,
rout is the radius of outer electrode of DMA,
Qsh is the sheath flow rate,
Qa is the aerosol flow rate, and
〈Vr〉 is the drift velocity of the particle in the radial direction.

Since 〈Vr〉 = ZpE for axisymmetric particles and the ra-
dial dependence of the electric field in a cylindrical DMA,
E = Ve

r ln(rout /rin) , where Ve is the detection voltage in the DMA
measurement, Equation (A17) becomes

tp = Ve

ln(rout/rin)

∫ Ein

Ea

dE

ZpE3
, [A18]

where Ein = Ve
rin ln(rout /rin) and Ea = Ve

ra ln(rout /rin) .
And the flow transit time in DMA is

tf = π
(
r2
out − r2

in

)
Ld

Qsh +Qa

. [A19]

A particle is detected when its precipitation time, tp, is equal
to the flow transit time, tf, in the DMA. By equating Equations
(A18) and (A19), the detection voltage (Ve) and shape informa-
tion (hidden in Zp) relationship can be obtained as

π
(
r2
out − r2

in

)
Ld

Qsh +Qa

= Ve

ln(rout/rin)

∫ Ein

Ea

dE

Zp · E3
, [23]

where the averaged mobility, which is a function of electric field
and contains the shape information, is given by Equation (11)
for axially symmetric particles such as a nanowire.D
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