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The theoretical drift velocity of a randomly oriented nonspherical aerosol particles in an
external field has been previously computed both in the limit of slow rotation and in the
limit of fast rotation but not in the intermediate interval. The low rotation limit has been
widely used to calculate the drift velocity for a range of nonspherical particles. The fast
rotation limit, which is equivalent to the projected area method, has been used for
molecular ions and agglomerates. A 1-D model equation containing the particle accel-
eration and an orientation dependent friction coefficient is proposed to predict the drift
velocity between the two limits. This model has the essential physical phenomena
without the complications of the 3-D treatment of the combined translation and rotation
behavior. As an example, the drift velocity is computed for model parameters based on the
friction tensor and rotational diffusion coefficient for circular cross section nanorods in the
free molecular limit. For a momentum accommodation coefficient of 0.9 and a particle
density of 1000 kg/m3, the largest percent deviation from the low rotation velocity limit is
14% and the deviation is at most 1% for nanorods of any length for diameters of 20 nm
diameter or larger. Much larger changes in the velocity ratio are shown to occur if the
momentum accommodation coefficient is reduced. Also, examples are given where the
dimensionless rotation rate increases by about a factor of 7 from either a change in density
or a change in the mean free path of the background gas. The results of recent experi-
ments and model calculation of the collision cross section and mobilities of large mole-
cular ions are discussed in regard to our model predictions on the effect of rotation on the
drift velocity.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A commonly used method for characterizing the size of aerosol particles is based on their mobility derived from the
measurement of their drift velocity under an external force such as an electrical or gravitational force. In the case of
spherical particles, the Stokes Einstein expression together with the Cunningham slip correction ( Friedlander, 2000; Hinds,
1999) allows one to predict the drift velocity from knowing the particle diameter. In the case of nonspherical particles, the
scalar friction coefficient for a sphere is replaced with the symmetric friction tensor leading to a dependence of the mobility
olland).
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on the particle orientation (Happel and Brenner 1983). Theoretical predictions of the particle mobility for nonspherical
randomly oriented particles have been based on either the assumption of slow rotation relative to the aerosol relaxation
time (Happel and Brenner 1983) or fast rotation (Li, Mulholland & Zachariah, 2014a). In this paper a model equation is
proposed for studying the effect of the rotation rate on the particle drift velocity. One advantage of this approach is that the
heuristic treatment of the essential physics using a one dimensional model avoids the complexity of the three dimensional
coupled translational and rotational equations of motion.

It will be shown that in the case of free molecular dynamics, the drift velocity is affected by the rotation rate. However,
for the case of continuum motion, the particle rotation is always in the slow rotation limit so that the expression given by
Happel and Brenner is valid.

This paper focusses on the effect of rotation on the drift velocity of a nonspherical particle in air. There are two methods
for computing the drift velocity. The most commonly used method is based on the steady state equation of motion for a
nonspherical particle (Happel and Brenner, 1983). At steady state, the external force F

!
acting on the particle and the friction

tensor
2
K are related by the following equation:

2
K v!¼ F

! ð1Þ
Thus, the drift velocity is given by:

v!¼2
K

�1
F
! ð2Þ

The expression for the orientation averaged drift velocity about the center of mass for non-skew particles is given by:

〈 v!〉¼ 1
3

1=K1þ1=K2þ1=K3
� �

Fk̂¼ 1
Kh

Fk̂; ð3Þ

where the external force is in the direction of the unit vector k̂. The quantity Ki is the ith principal component of the friction
tensor and Kh is a shorthand expression for the harmonic mean given in expression after the 1st equality. This expression
was derived by Happel and Brenner (1983) for the case of a gravitational external field. The nonskew property means that
there is no coupling between the translational and rotational motion and that the particle possesses a center of hydro-
dynamic stress. Examples of nonskew particles include bodies of revolution such as cylinders and prolate and oblate
ellipsoids.

Equation (3) has been widely used in computing the orientation averaged drift velocity for aerosols. Near the beginning
of his review regarding the drag forces on nonspherical particles, Cheng (1991) presents the analog to Eq. (3) for the
dynamic shape factor. Dahneke (1973a, 1973b, 1973c) used this expression for nonspherical particles in the continuum, free
molecular, and transition regime. Larriba et al. (2013a) have used Eq. (3) for computing the orientationally averaged collision
cross section for nanoparticles and complex ions along with the electrical mobility. Eq. (3) was used in the study of poly-
styrene doublets with monomer sizes ranging from 100 nm to 500 nm by Cheng, Allen, Gallegos, Yeh, and Peterson (1988)
using Millikan cell measurements and by Kousaka, Endo, Ichitsubo, and Alonso (1996) and Zelenyuk, Cai and Imre (2006)
based on electrical mobility measurements. Li, Mulholland and Zachariah (2012b, 2013) have used Eq. (3) in computing the
mobility of randomly oriented carbon nanotubes and of gold nanorods. Eq. (3) has been applied to chains of spheres by
Dahneke (1982) for a wide range of Knutson numbers and to agglomerates by Mackowski (2006) for the drag force com-
puted in the free molecular limit by Monte Carlo simulation.

Li et al. (2014a) pointed out that Eq. (1) is not valid if the particle is rotating rapidly compared to the aerosol relaxation
time. In this case the drift velocity is nearly independent of the orientation because there is not time for the drift velocity to
adjust to the orientation dependent friction coefficient. Li et al. (2014a) derived the following expression for the drift
velocity in the limit that the rotation time is much smaller than the aerosol relaxation time:

〈 v!〉¼ 1
1=3 K1þK2þK3ð ÞFk̂¼

Fk̂
Kav

ð4Þ

While this equation has not been previously used, there is an equivalent expression used in calculating the drift velocity
of molecular ions based on computing the collision integral by using Chapman-Enskog theory (Ruotolo, Benesch, Sander-
cock, Hyung & Robinson, 2008, Shvartsburg and Jarrold 1996; Shvartsburg, Mashkevich, Baker & Smith, 2007; von Helden,
Hsu, Gotts & Bowers, 1993 ). The drift velocity is related to the orientationally averaged collision integral. Li et al. (2014a)
show that for nanorods in the free molecular limit, the expression for 〈 v!〉 in Eq. (4) is equivalent to the expression com-
puted using the orientation averaged collision integral based on hard sphere collisions for randomly oriented ions.

There are also a number of studies (both theoretical and experimental) wherein the free molecular drag is assumed
directly proportional to the orientationally averaged project area (PA) of a particle. The proportionality to the projected area
is equivalent to Eq. (4) for the case of particles with a convex shape. Rogak, Flagan and Nguyen (1993) were the first to show
experimentally for small agglomerates that the mobility diameter was approximately linearly related to PA. Exact linearity
for the relationship between the drag and PA has not been shown for concave surfaces from which there can be multiple
collisions of one gas molecule with the surface of a single particle. However, Zhang, Thajudeen, Larriba, Schwartzentruber,
and Hogan (2012) show over a large range of cluster sizes in the free molecular limit that the ratio of the cross section to the
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projected area for fractals is constant with a standard deviation on the order of 3% for all the simulations. This study
included results for four fractal dimensions and for both diffuse and specular reflection.

In the same paper, Zhang et al. used dimensional analysis to arrive at a scaling equation for the scalar friction coefficient
in the transition regime where the projected area is a key quantity in the definition of a Knudsen number for nonspherical
particles. Direct Simulation Monte Carlo modelling was carried out to validate the scaling equation. The experimental
studies by Gopalakrishnan, McMurry, and Hogan (2015) validated the scaling equation for low to high aspect ratio particles
including gold nanorods, PSL doublets, and carbon nanotubes and by Thajudeen, Jeon and Hogan (2015) for TiO2 aggregates
over the mobility diameter range of 45 nm to 80 nm.

In the Discussion Section we will comment on the collision cross section measurements by Larriba et al. (2013b and
2015) for multiply charged polyethylene glycol chains and multiply charged ions of ionic liquids in regard to our model
calculations on the effect of rotation on the drift velocity, or equivalently, on the collision cross section.
2. Model equation

(Equations (3) and 4) correspond to the two extremes of fast and slow rotation relative to the translational aerosol
relaxation time. There is the unanswered question about the drift velocity for intermediate rotation rates. To provide a
physical validation of the limiting expressions and to also treat the intermediate case, we pose the following 1-D model
equation for a nonspherical particle both translating and rotating. It includes an inertial term, an orientation dependent
friction coefficient to simulate the changes as the particle rotates, and an external force F:

m
dv
dt

¼ �ðaþb cos ðωtÞÞvþF ¼ �Km θ
� �

vþF ð5Þ

The cos(ωt) term accounts for the orientation dependence of the model friction coefficient Km where θ¼ωt. One can
think of θ as the angle between the direction of the force and the major axis of particle. The constant amust be larger than b
so that the friction coefficient does not vanish or become negative. This equation has the property that the drift velocity,
averaged over one cycle for slow and fast rotation, correspond to the angle average of the inverse of the friction coefficient
and to the average of the friction coefficient, respectively, in analogy to Eqs. (3) and (4). The slow rotation corresponds to the
inertial term being zero and the fast rotation to the period for one cycle being much smaller than the minimum aerosol
relaxation time τ¼m=Km θmax

� �
.

vh islow ¼
Z

dθ
Km θ

� �=Z dθ

" #
F ¼ F

Km;h
ð6Þ

vh if ast ¼
Z

Km θ
� �

dθ=
Z

dθ
� ��1

F ¼ F
Km;av

ð7Þ

Eqs. (6) and (7) are the scalar analogs of Eqs. (3) and (4). Carrying out the integrals from 0 to 2π, one obtains the following
limiting velocities:

vh islow ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p F ð8Þ

vh if ast ¼
F
a

ð9Þ

To solve for the time dependent drift velocity, it is convenient to express the differential equation in reduced form.

dvr=dtrþð1þr cos ðαtrÞÞvr ¼ 1; ð10Þ

where vr ¼ v=v0 and tr ¼ t=τ with

v0 ¼ Fτ=m ð11Þ

τ¼m=a ð12Þ

r¼ b=a ð13Þ

α¼ωτ ð14Þ

The quantity τ is the aerosol relaxation time, r relates to the magnitude of the harmonic term, and α is a reduced rotation
velocity.



Fig. 1. Reduced drift velocity is plotted versus reduced time for low rotation velocity (α¼0.1, Plot A) and for high rotation velocity (α¼10, Plot B). In both
cases the initial drift velocity is zero.
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Solving the linear differential equation by determining an integrating factor and assuming the reduced drift velocity vr is
zero at tr¼0, one obtains:

vr trð Þ ¼
Z tr

0
exp � tr�t0r

� �� r
α

sin αtrð Þ� sin αt0r
� �� �� �

dt0r ð15Þ

For the following calculation, it is assumed that r equals ½. This results in the maximum to the minimum friction
coefficient being 3. Our focus is on the behavior at low rotation velocity, where the theory of Brenner is correct, and the high
rotation velocity, vr, where the simply averaged expression is expected to be correct. In Fig. 1 we show the reduced drift
velocity versus times for a value of the reduced rotation velocity (α) equal 0.1 and 10. The integration was carried out using
Wolfram Mathematica1 software. At the low rotation velocity, the drift velocity adjusts to the change in the friction coef-
ficient so quickly that the acceleration term is only important at small times corresponding to a few percent of one oscil-
lation. At high rotation velocity the drift velocity transient persists over three cycles. At longer times the drift velocity
becomes periodic though the amplitude of the oscillations are small because the period of the oscillation is small compared
to the particle relaxation time τ. The period of the oscillation is equal to 2π/α.

The long time average reduced particle drift velocity, vrh i, is computed as:

vrh i ¼
Z Tþ2π=α

T
vr tð Þdt ð16Þ

where the integral is taken over a cycle starting at T, where T is large enough for vr to have reached a constant cyclic pattern.
This would be T � 3 for α¼10 and T � 400 for α ¼ 0.1 as indicated in Fig. 1. As shown in Fig. 2, the average drift velocity
1 Certain trade names and company products are mentioned in the text in order to adequately specify the calculation method used. In no case does
such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the software is the
best available for the purpose.



Fig. 3. Transition function h(α,r) vs α for a range of values of the harmonic term coefficient r.

Fig. 2. Dependence of the reduced drift velocity on the rotation velocity for the coefficient of the harmonic term r¼0.5.
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approaches the limiting velocities predicted by Eqs. (8) and (9), 2/√3 (¼1.1547···) and 1, for low and high reduced rotational
velocities (0.1 and 10 ) for r¼1/2. The average drift velocity is not equal to the average of the peak and valley velocities
because the vr vs tr curve is broader near the minimum than the peak (see Fig. 1 for α¼0.1).

Above, we considered the quantity vrh ias a function of α. It is also a function of the coefficient of the harmonic term, r.
The dependence of vrh i on both r and α can be given in term of a product of a function of r, g(r), and a transition function h(α,
r), which is a monotonically decreasing function of α with a value of 1 in the limit of small α and a value of 0 in the limit of
large α:

vrh i ¼ 1þgðrÞh α; rð Þ; ð17Þ

where

gðrÞ ¼ 1� 1�r2
� �1=2� �

= 1�r2
� �1=2 ð18Þ

The function gðrÞ satisfies the small α limit that vrh i ¼ 1= 1�r2
� �1=2 (Eqs. (8) and (9)). It is seen from Fig. 3 that the

function h(α,r) has a weak dependence on r. This figure can be used together with Eqs. (17) and (18) to estimate the value of
vrh i for a range of values of α and r.
3. Rotation effect for nanorods

To relate the results of this model equation to the dynamics of an actual nonspherical particle, the relaxation time scales
for the translational drift velocity and the rotational Brownian motion are needed. Here we consider as an example a circular
cross section nanorod in the free molecular limit. The relaxation time for the translational motion (Hinds) for the case of a
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non- spherical particle is estimated as:

τt ¼m=Kh; ð19Þ
where Kh is computed using Eq. (3).

For Brownian rotation, we consider the case of rotation about the axis with the smallest rotation diffusion coefficient,
Drmin. The variance of the angle of rotation θ relative to an initial angle equal 0 is related to the diffusion coefficient and time
t by the expression:

θ2
D E

¼ 2Dmint ð20Þ

There is a degree of arbitrariness in the choice of the rotation relaxation time, τr. Because of the symmetry for a rod, the
full range of variation in the friction coefficient occurs over an angle range of 0 to π/2. We chose the rotation relaxation time
as the time at which the standard deviation of the rotation angle is equal to 1 rad, which corresponds to be about half of the
above angle range. This leads to the following estimate of the rotation relaxation time, τr:

τr ¼ 1=ð2DminÞ ð21Þ
The corresponding nanorod rotation velocity ωnr is estimated based on the square root of the angular variance as:

ωnr ¼ θ2
D Eh i1=2

=τr ¼ 2Dmin. (22).

Finally, the reduced rotation velocity αnr is given by:

αnr ¼ωnrτt ¼ 2Dminτt ð23Þ

We compute τt and Dmin for circular cross section nanorods with flat end caps and with diameter dnr and length Lnr in the
free molecular limit. The principle components of the friction tensor are, and K1 (¼ K2) for flow perpendicular to the major
axis and K3, for flow parallel to the major axis of the nanorod. These quantities are derived by Li et al. (2012a) based on
Dahneke's scalar expression of drag force as a function of orientation angle (Dahneke, 1973b):

K1 ¼
πηd2nr
2λ

π�2
4

βþ1
2

	 

f þ2β

� �
ð24Þ

K3 ¼
πηd2nr
2λ

βþπ
4
�1

� �
f þ2

h i
; ð25Þ

where η is the gas viscosity, λ the mean free path of gas, f the momentum accommodation coefficient, and β the aspect ratio
for the nanorod defined by Lnr/dnr.

The rotational diffusion coefficient for a nanorod in the free molecular regime is (Li, Mulholland & Zachariah, 2014b):

Dnr ¼
2kBTλ

πηL3nrdnr
1
6þ 1

8β3

	 

þ f π�2

48 þ 1
8βþ 1

8β2þπ�4
64β3

	 
� � ð26Þ

where kB is the Boltzmann constant and T is the absolute temperature.
The value of τt is computed using Eqs. (3), (19), (24) and (25) and ωnr is computed from Eqs. (22) and (26). The calcu-

lations are based on a temperature of 296.2 K, pressure of 101.3 kPa, a viscosity of 1.832�10�5 kg m�1 s�1, mean free path
of 6.730�10�8 m, density of 1.000 kg m�1, and f of 0.9. As shown in Fig. 4, the value of αnr is greater than 1 for nanorods up
to 16 nm diameter for β less than or equal to 3. Over this range of αnr the reduced rotation velocity is significantly affected by
the rotation. For nanorods with diameters of at most 3 nm, αnr is greater than 1 for β up to 17. From Eqs. (19), (23) and (26)
one finds that αnr is approximately proportional to β�3d�3

nr .
In our model calculation of particle drift velocity, we assumed r¼0.5. It is of interest to compute the particle drift velocity

based on the parameters for nanorods. From Eqs. (3) and (4) and noting that K1¼K2 for nanorods, we obtain the following
expression for the ratio of the cycle average velocities, Vratio,nr, in the limit of slow and fast rotation for nanorods:

Vratio;nr β
� �¼ vnrh islow

vnrh if ast
¼ 1
9

5þ2
K1

K3
þK3

K1

	 
	 

ð27Þ

From Eqs. (8) and (9), the ratio of the velocities is given by:

vh islow;model

vh ifast;model
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1�r2
p ð28Þ

For a fixed value of f, the asymptotic drift velocity ratio given by Eq. (27) is a function of only the aspect ratio β. The
corresponding value of r is obtained by equating the nanorod expression for the velocity ratio with the model ratio. It is seen
in Fig. 5 that the drift velocity ratio increases from a value of 1.0 to 1.133 as β increases from 1 to 10 and has a large β limit of
1.204 for a fixed momentum accommodation coefficient f¼0.9. This value corresponds to a value of r equal 0.55 for the
model equation as indicated in Fig. 5.
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It is of interest to estimate the error resulting from using the low rotation velocity limit expression for the drift velocity,
which is the most widely used expression, rather than the expression appropriate for the rotation velocity and translation
relaxation time for the nanorods.

We express the percent error, Δ(α,r) as:

Δ α; rð Þ ¼ 100 vr α; rð Þ� �� vr 0; rð Þ� �� �
= vr 0; rð Þ� � ð29Þ

The results are shown in Table 1 where the two model parameters are expressed in terms of the nanorods diameter and
aspect ratio. We computed vr(α,r) using Eq. (16).

In the Introduction it was stated that the slow rotation limit was valid for the continuum limit. To verify this, the values
of the dimensionless rotation velocity αcr were computed for circular cross section rods in the continuum limit based on the
Fig. 5. The dependence of the ratio of the cycle average drift velocity for slow and fast rotation of a nanorod on its aspect ratio. Also the value of r for the
model equation is given. The momentum accommodation coefficient f ¼0.9 is used.

Table 1
Percent error, Δ (Eq. 29), from Neglecting Rotation for Nanorods.

dnr values of β

1.5 3 5 10 20 30

1 �0.84 �4.79 �8.13 �11.76 �14.06 �14.48
3 �0.84 �4.79 �8.13 �11.38 �5.31 �1.20
5 �0.84 �4.79 �8.01 �6.56 �0.68 0.00
10 �0.84 �4.26 �4.15 �0.53 0.00 0.00
20 �0.75 �1.06 �0.13 0.00 0.00 0.00
30 �0.23 �0.13 0.00 0.00 0.00 0.00

Fig. 4. The effect of cylinder diameter and aspect ratio on the reduced rotation velocity. The horizontal double arrow line is the demarcation between fast
(above the line) and slow rotation region.
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expressions for the diffusion coefficient given by Ortega and de la Torre (2003) and for the friction tensor given by Batchelor
(1970). It was found that the values of αcr varied from a minimum of 2.2�10�4 to 3.7�10�7 for rod lengths over the range
of 1 mm to 100 mm and β over the range of 2 to 10. So it is seen that the low rotation velocity limit value for the drift velocity
is valid in the continuum limit.
4. Discussion

For nanorods with diameters greater than 20 nm, the predicted error in using the low rotation limit for computing the
drift velocity is at most 1% for any value of β. For smaller diameter nanorods, the error can be larger. The largest error is
�14% for β equal 30 for a 1 nm diameter nanorod. For β equal 10, the errors are �11% and �7% for a 3 and 5 nm diameter
nanorods.

The analysis of this paper relates to the drift velocity. The drift velocity is inversely proportional to the collision cross
section. As the rotation velocity increases, the drift velocity decreases and the collision cross section increases. Table 1 could
be expressed in terms of percent changes in the collision cross section relative to the fast rotation limit by using the relation
between the ratio of the slow to fast velocity limits and β (Eq. (27) and Fig. 5) together with the values in Table 1.

As suggested by the plot of h(α,r) in Fig. 3, the fast rotation limit is approached within 1% for α 410 and the slow
rotation limit for α o0.05. This corresponds to a ratio of 200 for the α’s in the two limits. Li (2012b) obtain a wider limit of
482 based on two times: The first, the time at which 50% of the particles have rotated by at least π/2, and the second, the
time at which 10% of the particles have rotated by π/18. Both of these approaches are approximate, and as discussed below, a
quantitative result would require the solution of the Langevin equations for the rotational and translational motion.

Larriba and Hogan (2013b) measured the mobilities of multiply charged polyethylene glycol chains. They found for a high
aspect ratio structure with a nominal diameter of 1 nm and 70 monomer units that the measured mobility exceeded the
predicted value by 10% for a diffuse hard sphere scattering model and by 4% for a model that also included a polarization
potential. Their model uses the Happel – Brenner approach for computing the drag tensor (their Eq. (12). This approach
assumes a slow rotation velocity relative to the particle relaxation time. Modeling the structure as a nanorod with a 1 nm
diameter and 10 nm length, we find that the nanorod is in the fast rotation limit (see Table 1) with the mobility decreased by
about 12% from the slow rotation limit. So the rotation affect may be a partial cause of the difference between theory and
experiment for the mobility of the multiply charged polyethylene glycol chains.

The study by Li and Wang (2003) indicates that the momentum accommodation coefficient f decreases for silver
nanoparticles as the particle size decreases below 3 nm. This means that there is an increased fraction of specular collisions.
Larriba-Andaluz, Fernandez-Garcia, Ewing, Hogan, and Clemmer (2015) measured the collision cross section of positively
charged ions of ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium
tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a
drift tube mobility spectrometer-mass spectrometer (DT-MS). They found that the ratio of the collision cross section to the
projected area, Ω/PA, was about 1.40 independent of particle size for mass diameters over the range of 1 nm to 9 nm for
nitrogen gas, while for helium gas, the ratio varied from about 1.07 for 1 nm diameter to about 1.25 for 9 nm. These ratios
correspond to values for the momentum accommodation coefficient of 1.02, 0.18, and 0.64 obtained using the following
relationship between Ω/PA and f:

f ¼ 8ðΩ=PA�1Þ=π ð30Þ
For nanorods with a diameter of 1 nm and an aspect ratio of 10, the velocity ratios for these values of f are 1.10, 1.82, and

1.24. This demonstrates that in helium gas the error from using the slow rotation approximation is predicted to be much
larger for small diameter nanorods than in nitrogen gas. The reason for the large change is from the large reduction in the
friction coefficient for the nanorod aligned in the direction of the flow. The measurement of the electrical mobility of
multiply charged polyethylene glycol chains in both helium and nitrogen would provide a test of the model predictions.

There is a caveat to the analysis in the preceding paragraph. Eq. (30) is based on Epstein's analysis that divides collisions
into specular collisions and diffuse collisions. Larriba-Andaluz et al. (2015) show this is not an accurate description of
realistic gas particle collisions. In fact, the inferred value of f from the cross section values is larger than 1.0, implying the
unphysical result of more than 100% specular reflection. Still, we think that the qualitative trend predicted by this analysis
regarding the velocity ratio is a useful first order treatment. Ultimately a theory is needed that incorporates both a realistic
model of the gas particle interaction and particle rotation.

The dimensionless rotation velocity αnr is also affected by the choice of the background gas because it is proportional to
(λ/η)2. This would result in a seven fold increase in the in αnr for helium compared to nitrogen assuming a momentum
accommodation coefficient equal to 0.9. If the accommodation were smaller than 0.9, the value αnr would increase further;
for example, for f equal 0.18, the predicted value of αnr increases by a factor 15 for a 1 nm diameter nanorod with β equal 10.

The aerosol relaxation time is proportional to the particle density. In the analysis above, it has been assumed the density
is 1000 kg/m3. The relaxation time would increase in proportion to the density. For a silver nanorod with a density of
8000 kg/m3, the % deviation from the slow rotation limit would increase from �0.6% to �7% for a 10 nm diameter nanorod
with an aspect ratio of 10 and from �0.2% to �5% for a 20 nm diameter nanoparticle with an aspect ratio of 5.
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The analysis leading to the expressions for the diagonal components of the friction tensor in Eqs. (25) and (26) is based
on the assumption that the nanorod is stationary during the collisions. Shvartsburg, Mashkevich & Siu (2000) included the
effect of thermal rotation on the ion mobility. The following approximate expression for the change in the projected cross
section of a square nanorod from the rotation of the nanorod is derived in Appendix B:

ΔAp

Ap
¼ C

mg

mnr

� �1=2
ð31Þ

The constant C was chosen to be 0.24 based on molecular dynamics simulations carried out by Shvatsburg et al. For a
square cross section nanorod (1 nm�1 nm) with a length of 10 nm, the predicted increase in the collision cross section for
He, N2, A, Xe are 0.3%, 1.2%, 1.4%, and 2.5%. While this analysis is only valid to within about a factor of 2, it does suggest that
at least for nitrogen gas, the thermal rotation does not affect the collision cross section or mobility by more than a couple
percent for nanorods with an aspect ratio of 10 or greater and with diameters greater than 1 nm. For smaller nanorod type
structures or for large atomic mas gases such as Xe, the effect may warrant a quantitative treatment to help understand the
deviations observed between theory and experiment regarding the collision cross section for ionic liquids (Larriba-Andaluz,
2015) and for coulombically stretched polyethylene glycol chains (Larriba and Hogan, 2013a, 2013b).

There is a close relationship between the particle drift velocity and the particle diffusion coefficient. It is given by
D¼ kT=f (Einstein 1905, Friedlander 2000), where f is the friction coefficient. In the case of nonspherical particles, a widely
used expression for the translational diffusion coefficient is given by Landau and Lifshitz (1959):

D¼ kT 1=3 1=K1þ1=K2þ1=K3
� � �¼ kT=Kh ð32Þ

This corresponds to the low rotation velocity limit. As the rotation velocity increases, the diffusion coefficient will
decrease from the slow rotation limit value by the same percentage factor as the drift velocity decreases in this limit.

The above analysis is based on a model equation containing the essential physics of two time scales – one for translation
and one for rotation. The choice of a cos(ωt) time dependence is not unique. Another viable choice is a cos2(ωt) dependence
based on the angular dependence for the equation of motion for a nanorod as discussed in Appendix A. Using the rela-
tionship between cos2(ωt) and cos(2ωt), this case reduces to the earlier treatment except the frequency is doubled. This
results in a doubling of the values of α used in computing h(α,r) in Fig. 3 and an increase in the % error for larger values of
the diameter and aspect ratio of the nanorod. For example, the errors increased from �5.3% to �8.9% for dnr¼ 3 nm and
β¼20 and from �4.2% to �6.4% for dnr ¼ 10 nm and β¼5. The complete table of the modified values given in Appendix A
show that for most cases the change is small. It is along the diagonal of the table that the changes are significant.

The two periodic functions considered give similar results suggesting that they can be useful in estimating the magnitude
of a rotational effect on the drift velocity. If one were to choose another periodic function such as a square wave, the velocity
ratio in the two limits will be unchanged and the midpoint value of the two velocities is expected to be near a value of 1 for
the reduced rotation velocity. We expect a change in the steepness of the sigmoidal curve for h(α,r) shown in Fig. 3 for a
square wave. Still, this is a heuristic treatment of the effect of rotation. A quantitative treatment would be to use the
Langevin equations for both translation and rotation to compute the drift velocity of a nanotube. In this case, the Brownian
rotation would be accurately described.
Acknowledgement

Dr. Trevor Saccucci assisted with the numerical integration of the model equation.
Appendix A. Analysis of model equation for a cos2ωt periodic function

As is shown below, a cos2θ dependence is obtained for the friction coefficient of a nanorod or other bodies of revolution.
The z component of the equation of motion for an electric field in the z direction is given by:

m
dvz
dt

¼ � k̂U
2
Ks U k̂vz

� �
þqE ðA1Þ

where k̂ is the unit vector in the space-fixed z direction and
2
Ks is the friction tensor expressed in terms of the space fixed

axes. For an arbitrary orientation of the body of revolution, there is the following relationship between the friction tensor
expressed in terms of the principal components of the body fixed axes,

2
Kb, and the friction tensor in terms of the space fixed

axes:

2
Ks ¼

2
R

2
Kb

2
R

�1
ðA2Þ

2
Kb ¼

K1

K1

K3

0
B@

1
CA ðA3Þ



Table A1
Percent Error, Δ ( Eq. 29), from Neglecting Rotation for Nanorods for α1¼2α.

dnr values of β

1.5 3 5 10 20 30

1 �0.84 �4.79 �8.13 �11.76 �14.06 �14.74
3 �0.84 �4.79 �8.13 �11.62 �8.94 �3.21
5 �0.84 �4.79 �8.13 �9.75 �2.01 0.00
10 �0.84 �4.72 �6.37 �1.39 0.00 0.00
20 �0.81 �2.39 �0.76 0.00 0.00 0.00
30 �0.58 �0.57 0.00 0.00 0.00 0.00
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2
R ¼

cos ψcosφ� cos θ sin φ sin ψ cos ψ sin φ� cos θ cos φ sin ψ sin ψ sin θ
�sinψcosφ� cos θ sin φ cos ψ � sin ψ sin φþ cos θ cos φ cos ψ cos ψ sin θ

sin θ sin φ � sin θ cos φ cos θ

0
B@

1
CA ðA4Þ

where
2
R is the unitary rotation matrix expressed in terms of the Euler angles, K3 is the principal value for flow parallel to the

major axes, and the other two components (K1¼K2) for flow perpendicular to the principal axis. Carrying out the matrix
multiplication in Eq. (A2) and substituting into Eq. (A1), one obtains:

m
dvz
dt

¼ � K1�ðK1�K3Þ cos 2θ
 �

vzþqE ðA5Þ

Using the relation between cos2θ and cos(2θ), we obtain an expression similar to Eq. (5), our model equation.

m
dvz
dt

¼ � 1=2ðK1þK3Þþ1=2ðK1�K3Þ cos 2θ
 �

vzþqE¼ � a1þb1 cos 2θ
 �

vzþqE ðA6Þ

Substituting ωt for θ we obtain an equation identical in form to Eq. (5) except with twice the frequency. This change in
frequency results in a doubling in the dimensionless rotation velocity.

α1 ¼ 2ωτ ðA7Þ
We have computed the modified results for the reduced drift velocity using Eqs. (17) and (18). The value of h(α1,r) is

determined from Fig. 3 using α1¼2 α. The results for the percent error from using the low velocity limit are presented in
Table A1.

We point out a subtlety in the above analysis. The expression for the velocity ratio given by Eq. (27) is the correct
expression for a nanorod and is based on Eqs. (3) and (4), which include the tensor expression for the friction coefficient and
the averaging over the Euler angles. Eq. (28) is an approximate expression based on a scalar average given by Eqs. (6) and
(7). To illustrate the difference in the two expressions, we compute the velocity ratio for the nanorod for the case β ¼10.
From Eq. (27), we obtain Vratio (Eq. (27)) ¼ 1.133. The second approach is to compute r1 as the ratio b1/a1¼0.361 (from
Eq. (A6), and then use Eq. (28) to compute Vratio (Eq. (27))¼1.072. The increase from unity for the correct expression is
almost twice the increase for the scalar analysis. A value of r equal 0.470 substituted into Eq. (28) will give the correct
velocity average. Our approach is to compute the value of r that gives the correct velocity ratio and use this value in the
average reduced velocity as a function of the reduced rotation velocity α.
Appendix B. Derivation of approximate equation for the effect of rotation velocity on the collision cross section

For simplicity we consider a square cross section nanorod (d� d). As the nanorod rotates perpendicular to the linear
trajectory of a gas molecule, it is possible that the side surface of the nanorod will collide with the gas molecule. This would
require the molecule to start near the nanorod surface and then collide with the rotating nanorod as it moves the distance
equal to the thickness of the nanorod. A qualitative estimate of the increase in the cross section relative to no rotation based
on the time Δt for the molecule to travel a distance d and the distance Δd rotated in this time.

Δt ¼ d=vz ðB1Þ

Δd¼ rωΔt; ðB2Þ
where vz is the molecular velocity in the z-direction, ω the rotation velocity of the nanorod, and r the distance from the

center of the nanorod to an arbitrary point. We replace r with the average value R/2 , where R is the distance from the center
of the nanorod to its end, and estimate vz and ω using the equipartition of energy where I is the moment of inertial and mr

the mass of the rod assuming a density of 2000 kg/m3.

vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=mg

q
ðB3Þ



Table B1
Fractional change in the nanorod cross section as a function of the molecular mass.

Mass of gas
Gas kg/molecule Δd/d

He 3.32E-27 0.003
Nitrogen 4.65E-26 0.012
Argon 6.64E-26 0.014
Xenon 2.18E-25 0.025
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ω¼
ffiffiffiffiffiffiffiffiffiffi
kT=I

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT=ðmrR

2Þ
q

in the slender rod limitð Þ ðB4Þ

Substituting from Eqs. (B1), (B3), and (B4) into Eq. (B2), we obtain:

Δd¼ Cd
mg

mr

� �1=2
ðB5Þ

The proportionality constant C is chosen to be 0.24 to give the correct increase in cross section for the rotation of a chain
of 10 carbon atoms (Shvartsburg et al., 2000) in Xenon gas. In Table B1 below, we show the predicted percentage increase in
the collision cross section for 4 different gases. Since the collision length of the nanorod is not affected by rotation, the
percentage change in the cross section area, ΔAp/Ap, is equal to the percentage change in d.

We comment that this analysis is qualitatively consistent with the molecular dynamics results of Shvartsburg et al. for trends
regarding the effects of the molecular weight of the gas and the mass of the nanorod on the fractional change in Δd/d . However,
this analysis is not able to predict the nanorod length giving the peak effect for a fixed diameter.
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