
PHYSICAL REVIEW E 95, 013103 (2017)

Friction factor for aerosol fractal aggregates over the entire Knudsen range
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We develop an approach for computing the hydrodynamic friction tensor and scalar friction coefficient for
an aerosol fractal aggregate in the transition regime. Our approach involves solving the Bhatnagar-Gross-Krook
equation for the velocity field around a sphere and using the velocity field to calculate the force on each primary
sphere in the aggregate due to the presence of the other spheres. It is essentially an extension of Kirkwood-Riseman
theory from the continuum flow regime to the entire Knudsen range (Knudsen number from 0.01 to 100 based on
the primary sphere radius). Our results compare well to published direct simulation Monte Carlo results, and they
converge to the correct continuum and free molecule limits. Our calculations for clusters with up to 100 spheres
support the theory that aggregate slip correction factors collapse to a single curve when plotted as a function of
an appropriate aggregate Knudsen number. This self-consistent-field approach calculates the friction coefficient
very quickly, so the approach is well-suited for testing existing scaling laws in the field of aerosol science and
technology, as we demonstrate for the adjusted sphere scaling method.
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I. INTRODUCTION

Aerosol fractal aggregates formed from the coagulation of
smaller, spherical primary particles are found in many natural
and industrial settings. Understanding the forces on these
aggregates is important in a number of science and engineering
disciplines, including combustion, fire safety, atmospheric and
environmental sciences, materials engineering [1], and nuclear
reactor safety [2]. The translational drag force for a particle
moving slowly relative to the surrounding fluid—given by
F = −ζU0, where U0 is the particle’s relative velocity and ζ is
the orientation-averaged scalar friction factor—is particularly
important because it influences the transport properties of
the particle, including its diffusion coefficient and electrical
mobility.

In many practical applications, the primary sphere radius a

is significantly less than the mean free path of the surrounding
gas (λ ≈ 65 nm at standard temperature and pressure and an
order of magnitude higher near a flame), so that the primary
sphere is in or near the free molecule flow regime. At the same
time, the radius of gyration Rg for the agglomerate may be
comparable to or larger than the mean free path, so that the
aggregate is in the transition flow regime. As one example, for
carbonaceous soot a ≈ 5–30 nm and Rg ≈ 30–1000 nm.

There are a number of theories and techniques for com-
puting the translational friction factor of macromolecules
and particle aggregates in the continuum regime, including
Kirkwood-Riseman (KR) theory [3] and its extensions by
Rotne and Prager [4], Yamakawa [5], and Chen et al. [6], as
well as algorithms that use the Hubbard and Douglas analogy
between the electrostatic capacitance and the friction factor
[7–9]. Likewise, there are established methods for computing
ζ in the free molecule regime that simulate the ballistic nature
of interactions between gas molecules and aggregates [10–13].

In contrast, there are few approaches for the transition
regime. Melas et al. [14] estimated the friction coefficient
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in the near-continuum regime by solving the Laplace equation
with a slip boundary condition at the surface of the particle. In
a followup paper, the authors determined that their collision
rate method is valid for Knudsen numbers less than 2 [15].

Dahneke [16] developed the adjusted sphere method for
the transition regime, which applies a slip correction factor to
the continuum friction factor. The key to this development
is the identification of an aggregate Knudsen number that
reduces a problem involving two length scales (primary radius
and aggregate radius of gyration) to a single dimensionless
length. Dahneke’s approach is similar to the approach used
to calculate the drag on a sphere in the transition regime,
but the adjusted sphere method uses an adjusted Knudsen
number based on geometric descriptions of the particle in
the continuum (hydrodynamic radius, RH ) and free molecular
[projected area (PA)] regimes.

Through scaling analysis, Zhang et al. [17] developed
an approach analogous to the adjusted sphere method and
demonstrated that the approach yields friction factors com-
parable to direct simulation Monte Carlo (DSMC) results for
the aggregates they studied (spheres, dimers, and dense and
open 20-particle aggregates). However, it requires knowledge
of the hydrodynamic radius and the projected area of the
particle, which may take tens of minutes to a few hours to
obtain computationally for a single particle. Obtaining RH

and PA experimentally is possible, but it requires painstaking
transmission electron microscopy (TEM) measurements [18].
More rigorous computational techniques for calculating the
transition regime friction factor—such as DSMC or molecular
dynamics—are time-consuming: for instance, the reported
DSMC calculation times in Ref. [17] were on the order of
one CPU week for a given Knudsen number and a given
aggregate. Thus, a self-consistent-field theory method for
quickly estimating the scalar friction factor of an aggregate
across the Knudsen range is highly desirable.

In this paper, we present an approach for computing
the hydrodynamic friction tensor H and the scalar friction
coefficient ζ for fractal aggregates across the entire Knudsen
range. Our approach involves solving for the velocity field
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around a sphere in the transition regime and using the velocity
field to compute the friction factor for the aggregate. In
essence, this approach is an extension of KR theory [3] from
the continuum regime to the transition regime. We will first
present our solution of the Krook equation for the velocity
field around a sphere, which follows the procedure developed
by Lea and Loyalka [19] and Law and Loyalka [20]. We then
describe our extension of KR theory to the transition regime.
Finally, we compare our results to the DSMC results of Zhang
et al. [17] and to the scaling theory in that paper.

II. VELOCITY FIELD

To determine the velocity around a sphere in the transition
regime, we use the kinetic theory approach provided by the
Boltzmann equation. For this study, we will use the Bhatnagar-
Gross-Krook (BGK) model [21] instead of the full Boltzmann
collision operator.

Consider a sphere with dimensional radius a∗ in a gas
moving at constant velocity U∗

∞. We will define the viscosity in
terms of the gas mean free path λ as μ = 0.499ρc̄λ, where c̄ is
the gas mean thermal speed, which is consistent with Ref. [17].
For this study, our nondimensional sphere radius is related
to the Knudsen number Kn = λ/a∗ by a = 0.501

√
π Kn−1

[22,23].
If the flow speed is very small compared to the thermal

speed of the gas molecules (U∞ � 1), then we can linearize
the molecular velocity distribution f (r,c),

f = π−3/2ρ∞e−c2
(1 + 2c · U∞ + h), (1)

where ρ∞ is the density far from the sphere, c is the molecular
speed, and h is the perturbation to the distribution function
due to the sphere. With this linearization and using the BGK
model, we get the nondimensional Krook equation,

c · ∇h(r,c) = ε1(r) + c · ε2(r) + 2
3

(
c2 − 3

2

)
ε3(r) − h, (2)

where ε1, ε2, and ε3 are perturbations to the density, velocity,
and temperature fields around the sphere,

ρ(r) = ρ∞[1 + ε1(r)], (3)

U(r) = U∞ + 1
2ε2, (4)

T (r) = T∞[1 + ε3(r)]. (5)

We followed the same general solution procedure for the
perturbations as Lea and Loyalka [19] and Law and Loyalka
[20], with one exception related to the solution far from
the sphere, as discussed below. Notably, we assumed diffuse
reflection between the gas molecules and the sphere. This
approach gives the r and θ components of the velocity
perturbation ε2 as U0

√
2q2(r) cos θ and −U0

√
2q3(r) sin θ ,

where r is the distance from the origin and θ is the angle
between r and U∞. The full velocity field in spherical
coordinates is

U(r) = U∞ cos θ

[
1 + 1√

2
q2(r)

]
er

−U∞ sin θ

[
1 + 1√

2
q3(r)

]
eθ . (6)

FIG. 1. Ratio of the calculated drag from the Krook equation to
the free-molecule drag. Results are compared to a fit to Millikan’s
data [25].

Far from the sphere (i.e., for r − a > 10), we fit q2(r) and
q3(r) to the asymptotic solution to the Krook equation given
by Takata et al. [24],

lim
r→∞ q2(r) =

√
2c1

a

r
+

√
2c2

(a

r

)3
, (7)

lim
r→∞ q2(r) = c1√

2

a

r
− c2√

2

(a

r

)3
. (8)

Lea and Loyalka [19] and Law and Loyalka [20] used a
slightly different form of the solution for large distances from
the sphere, but otherwise our approach is consistent with the
approach in Refs. [19,20].

We present our solution of the drag as the ratio between drag
F for the specified Knudsen number and the free molecule drag
FFM. As shown in Fig. 1, our drag results compare favorably
(i.e., within 2–3 %) with a fit to Millikan’s oil drop data [25]
reported by Cercignani et al. [23],

F

FFM
= A + B

2π−1/2a + A + B exp(−2π−1/2Ca)
, (9)

where A = 1.234, B = 0.414, and C = 0.876. Our results are
also consistent with previous calculations [19,20,23,24], as
shown in Table I. (See the Supplemental Material for more
detailed results [26].)

III. KIRKWOOD-RISEMAN THEORY

Kirkwood and Riseman [3] demonstrated that the force
on the ith element of an N -element polymer chain is
given by

Fi = −ζ0(U0 − ui) − ζ0

n∑
i �=j

Tij · Fj , (10)

where U0 is the unperturbed fluid velocity, ui is the velocity of
the ith chain element, ζ0 is the friction factor given by Stokes’
law, and Tij is the hydrodynamic interaction tensor. The total
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TABLE I. Comparison of our results for F/FFM to Millikan’s data and to results from previous computational studies.

a Kn Millikan [25] Cercignani et al. [23] Law and Loyalka [20] This study

0.05 17.8 0.9784 0.9778 0.9771 0.9769
0.075 11.8 0.9677 0.9651 0.9658 0.9654
0.10 8.88 0.9571 0.9529 0.9546 0.9540
0.25 3.55 0.8959 0.8864 0.8912 0.8884
0.50 1.78 0.8036 0.7900 0.8007 0.7916
0.75 1.18 0.7236 0.7088 0.7271 0.7104
1.00 0.888 0.6549 0.6404 0.6513 0.6423
1.25 0.710 0.5961 0.5824 0.5967 0.5850
1.50 0.592 0.5456 0.5332 0.5507 0.5363
1.75 0.507 0.5021 0.4910 0.5115 0.4947
2.00 0.444 0.4645 0.4546 0.4779 0.4588
2.50 0.355 0.4029 0.3951 0.4233 0.4001
3.00 0.296 0.3551 0.3488 0.3521 0.3545
4.00 0.222 0.2863 0.2818 0.2870 0.2884
5.00 0.178 0.2396 0.2360 0.2431 0.2429
6.00 0.148 0.2058 0.2029 0.2120 0.2099
7.00 0.127 0.1804 0.1779 0.1822 0.1848
8.00 0.111 0.1606 0.1583 0.1642 0.1650
9.00 0.0987 0.1447 0.1426 0.1501 0.1492
10.00 0.0888 0.1317 0.1297 0.1388 0.1361

force on the chain is the vector sum of the forces on the chain
elements, F = ∑N

i Fi .
The original derivation used the Oseen tensor for Tij .

Rotne and Prager [4] and Yamakawa [5] derived a modified
hydrodynamic tensor Tij that accounts for the curvature of the
chain elements and hydrodynamic interactions between two
elements,

Tij = 1

8πμrij

{[
I + r ij r ij

r2
ij

]
+ 2a2

3r2
ij

[
I − 3r ij r ij

r2
ij

}
, (11)

where r ij is the vector from the ith element to the j th element,
and rij is the distance between the elements. Chen, Deutch,
and Meakin later applied this approach to find the translational
drag force on a fractal aerosol particle [6,27,28].

Rotne and Prager [4] and Yamakawa [5] noted the sim-
ilarities between their modified interaction tensor and the
solution of Stokes flow around a stationary sphere. We can
write the perturbation to the velocity caused by the sphere in
the following form:

v(r ij ) = Vij · U0, (12)

where

Vij (r ij ) = 6πμa

8πμrij

[(
I + r ij r ij

r2
ij

)
+ a2

3r2
ij

(
I − 3r ij r ij

r2
ij

)]
.

(13)

Written thus, the velocity perturbation is the dot product of
the unperturbed velocity U0 and a tensor Vij that describes
the action of the sphere on the flow. Vij is the product of the
Stokes friction factor [the numerator of the leading coefficient
in Eq. (13)] and a hydrodynamic tensor that is the same as the
modified hydrodynamic interaction tensor in Eq. (11), with
the exception of the factor of 2 in the r−3

ij term in Tij . This
suggests that we can replace the product ζ0Tij in Eq. (10) with

the tensor Vij with minimal error, since the term proportional
to r−3

ij decays quickly as we move further from the j th particle.
The force on the ith particle is now

Fi = −ζ0U0 −
N∑

i �=j

Vij · Fj . (14)

Here, we are assuming that each of the primary particles is
translating at the same velocity relative to the background
gas, which is appropriate for an aerosol particle. That relative
velocity is now specified as U0.

To verify that the error in using the velocity perturbation
tensor in place of the product of the modified Oseen tensor and
the monomer friction coefficient is small, we calculated the
drag on the open and dense 20-particle aggregates described
below using both approaches. The error in the drag calculated
using Vij is less than 2% for the dense aggregate and less
than 1% for the open aggregate. This error decreases as the
number of primary spheres increases, as expected from the r−3

ij

dependence.
To extend KR theory from the continuum regime to the

transition regime, we set ζ0 equal to the friction coefficient
for a sphere that we calculated using the Krook equation, and
we write the hydrodynamic tensor Vij in terms of the velocity
perturbation ε2,

Vij = −q2(rij )√
2

r ij r ij

r2
ij

− q3(rij )√
2

(
I − r ij r ij

r2
ij

)
. (15)

We obtain the orientation-averaged translational friction factor
for the particle by following the approach outlined in Happel
and Brenner [29]: we calculate F/U0 for three mutually
orthogonal particle orientations, compute the eigenvalues λm

of the resulting friction tensor, and set the friction coefficient
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FIG. 2. Open (left) and dense (right) 20-particle aggregates used
in this study. The calculated RH and PA for these aggregates are very
close to the values for the open and dense aggregates in Ref. [17]. The
colors represent the calculated ratio of the drag on a primary sphere
to the drag on an isolated sphere at the specified Knudsen number. A
ratio of unity suggests that a sphere behaves as if it is isolated.

equal to the harmonic average of the eigenvalues,

ζ =
(

1

λ1
+ 1

λ2
+ 1

λ3

)−1

. (16)

Note that the friction tensor is symmetrical (allowing for some
numerical uncertainty) in the transition regime, as it is in
continuum flow.

Because our drag results from the Krook equation are
nondimensionalized by the free-molecule drag force, we
obtain the dimensional scalar friction factor by multiplying
by the free-molecule friction factor for the primary sphere,

ζ ∗ = ζ
π (8 + π )

2.994

μ

λ
a2. (17)

IV. RESULTS

Numerous experimental studies have been performed to
determine the friction coefficient—or a related quantity, the
electrical mobility—for fractal aggregates in the transition
regime, as summarized in a review paper by Sorensen [30].
However, most published data lack the detailed description
of particle morphology (i.e., the hydrodynamic radius RH

and the PA) needed for a meaningful comparison with our
theoretical calculations. Zhang et al. [17] compared DSMC
results to their own data [31], while Thajudeen et al. [18]
compared mobility data to the adjusted sphere method scaling
law; both studies showed good agreement between theory
and experimental data. Thus, we will compare our results
to the scaling law and to published DSMC results [17] for
well-characterized particles over a wide range of Knudsen
numbers. Specifically, we have generated aggregates with
similar characteristics to the open and dense aggregates in
Ref. [17]. Our aggregates are shown schematically in Fig. 2.
We generated the particles with a cluster growth algorithm
[13] where we specify the fractal prefactor and exponent and
the number of primary spheres. We verified that our particles
have similar hydrodynamic radii and projected areas to the

FIG. 3. Comparison of our results for the slip correction factor
to the DSMC results from Zhang et al. [17] for a dimer, an open
20-particle aggregate, and a dense 20-particle aggregate. The slip
correction factor is the ratio of the continuum friction factor 6πμRH

to the calculated friction factor.

particles described in Ref. [17] using the Zeno algorithm [32]
for RH and our own algorithm for the projected area. (The
Zeno algorithm uses a random-walk approach to calculate the
electrostatic capacity of an aggregate; Hubbard and Douglas
[7] have demonstrated that the hydrodynamic radius is within
1% of the electrostatic capacity for shapes with analytical
solutions for both quantities.) We also compared our results
for a dimer to the DSMC results.

Figure 2 illustrates the effects of the Knudsen number on
the flow field and drag on each primary sphere. The color of
each sphere in the figure is the ratio between the calculated
drag Fi on each sphere and the drag ζ0U0 on an isolated
sphere at the specified Knudsen number; alternatively, the
color represents the fluid velocity at the center of each sphere.
The open aggregate at a primary Knudsen number of 10 has
relatively little effect on the flow field. Monomers near the
periphery of the aggregate behave almost like isolated spheres,
while monomers near the interior of the particle experience a
lower fluid velocity largely due to direct shielding by the other
spheres. This behavior is characteristic of free-molecule flow.

For the same particle at a primary Knudsen number of 1, the
velocity at each monomer is much lower than in the Kn = 10
case. Clearly, all of the monomers are affected to a larger
degree by the presence of the neighboring spheres. The same
is true for the dense aggregates with a fractal dimension of 2.5:
each monomer has more neighbors, and thus each monomer
behaves less like an isolated sphere than in the case of an open
aggregate with a fractal dimension of 1.78.

Our results for the drag on the dimer and open and dense
aggregates are shown in Fig. 3. Here, we have plotted the
aggregate slip correction factor, �−1 = 6πμRH /ζ ∗, versus
the primary Knudsen number. Both our results and the
DSMC results assume diffuse reflection and full thermal
accommodation between the gas molecules and the particle.
In general, our KR theory results compare well with the
DSMC results. Our calculated slip correction factors are higher
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FIG. 4. Calculated slip correction factors for a range of aggregate
morphologies, plotted vs the aggregate Knudsen number. DSMC
results from Zhang et al. [17] are included for comparison.

than the DSMC slip factors at decreasing Knudsen numbers,
though Zhang et al. [17] note that their DSMC results tend to
underpredict the slip correction factor due to the finite size of
the computational domain. The DSMC results are particularly
influenced by domain size at lower Knudsen numbers, which
explains the larger deviation between our results and the
DSMC results in the near-continuum regime. Note that we
discarded one of the near-continuum dense aggregate DSMC
points from Ref. [17] because it fell significantly below the
continuum limit �−1 = 1.

We used our Kirkwood-Riseman approach to test the
observations put forth in Refs. [17,18,33] that plots of the
slip correction factor versus the aggregate Knudsen number,
defined by Zhang et al. [17] as

Kn = πλRH/PA, (18)

collapse to a single curve. Figure 4 shows our results for
aggregates with a range of fractal dimensions and the number
of primary spheres. We also include the DSMC results from
Zhang et al. [17] for comparison. Our results and the DSMC
results all follow the same general curve, with relatively little
deviation among the various calculations. This provides further

support to the theory of a universal slip correction factor versus
aggregate Knudsen number scaling law.

V. DISCUSSION

We have introduced an approach for computing the trans-
lational friction coefficient for a fractal aerosol particle across
the entire Knudsen range, given the particle’s coordinates and
primary sphere radius. Coordinates can be generated using a
cluster growth algorithm, as we have done for this study, or they
can be obtained from TEM images using methods described
in the literature (see, e.g., Ref. [18]).

The solution method is also very fast: it takes approximately
10 s on a single processor to obtain the friction coefficient for
approximately 50 Knudsen numbers for a 20-particle aggre-
gate. Furthermore, our Kirkwood-Riseman results converge to
the correct continuum and free-molecule limits obtained using
the Hubbard-Douglas approximation for the continuum and
a ballistic approach for the free-molecule aggregate friction
factor.

Over the parameter range examined, our results support
the validity of the adjusted sphere method developed by
Dahneke [16] and Zhang et al. [17] and promoted by more
recent studies [14,15,18,33]. Because the Kirkwood-Riseman
approach can provide results quickly across the Knudsen
range, this approach may be preferable to DSMC for evaluating
scaling laws (such as those developed by Rogak et al. [34],
Lall and Friedlander [35], and Eggersdorfer et al. [36]) that
relate the friction coefficient to the number of primary spheres
in the aggregate.

While we have focused on the friction coefficient in this
paper, our method also determines the friction tensor, which is
important when considering particle alignment in an external
force field [37].

Finally, we emphasize that our results assume diffuse
reflection between the gas molecules and the particle. This is
consistent with past computational studies for fractal aerosol
particles (see, e.g., Refs. [13,17]) and with experimental
results, which suggest that most collisions are diffuse [38].
With that said, the Kirkwood-Riseman approach could be
applied for alternative reflection models, provided one solves
the Krook equation for the velocity using the appropriate
boundary condition at the surface of the sphere.
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