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Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime
using extended Kirkwood-Riseman theory
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We apply our extended Kirkwood-Riseman theory to compute the translation, rotation, and coupling friction
tensors and the scalar rotational friction coefficient for an aerosol fractal aggregate in the transition flow regime.
The method can be used for particles consisting of spheres in contact. Our approach considers only the linear
velocity of the primary spheres in a rotating aggregate and ignores rotational and coupling interactions between
spheres. We show that this simplified approach is within approximately 40% of the true value for any particle
for Knudsen numbers between 0.01 and 100. The method is especially accurate (i.e., within about 5%) near the
free-molecule regime, where there is little interaction between the particle and the flow field, and for particles
with low fractal dimension (�2) consisting of many spheres, where the average distance between spheres is
large and translational interaction effects dominate. Our results suggest that there is a universal relationship
between the rotational friction coefficient and an aggregate Knudsen number, defined as the ratio of continuum
to free-molecule rotational friction coefficients.
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I. INTRODUCTION

Nanoscale aerosol particles consisting of many spheres
in point contact are formed in many natural and synthetic
processes. The size, shape, and orientation of these particles
greatly affect their transport properties [1,2], optical properties
[3–5], degree of alignment in an external field [3–6], filtration
efficiency [7], and their effects in biological systems, including
lung deposition [8,9].

Much of the theoretical and experimental literature on the
transport properties of nano-scale aerosol particles focuses
on the translational friction coefficient (or, equivalently, the
electrical mobility). There is comparatively little focus on
the rotational friction or diffusion coefficients, which affect
particle alignment in an external field and relaxation time from
an aligned state to a fully random state [3–6]. Inclusion of ro-
tational dynamics is also important when considering particle
coagulation rates in Brownian motion simulations [10].

There are analytical expressions available in the literature
for the torque on (or the rotational diffusion coefficient of)
simple shapes—such as spheres, rods, and ellipsoids—in both
the continuum [11–13] and free-molecule regimes [14–16].
However, there are no such expressions for complicated shapes
such as fractal aggregates. Garcia de la Torre and colleagues
have extensively studied the rotational problem for rigid
particles consisting of multiple spheres in point contact in
the continuum regime [17–21]. More will be said about their
work shortly. There are far fewer studies available for the free-
molecule regime. Li et al. [6] approximate the torque on a frac-
tal aggregate rotating in a quiescent fluid by considering only
the linear velocity of each sphere and neglecting the effects of
shielding by the other spheres in the cluster, thereby providing
an upper bound for the torque. We are unaware of any more de-
tailed methods for calculating the torque on a fractal aggregate
in either the free-molecule or the transition flow regime. This
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is significant because in many aerosol applications the primary
spheres are much smaller than the mean free path of the gas.

In this paper, we discuss the application of our extended
Kirkwood-Riseman (EKR) theory [22] to the translational and
rotational motion of fractal aggregates in the transition flow
regime. In Sec. II we provide the equations for the drag and
torque on a rigid particle, as introduced by Brenner [12]; we
describe how one can apply Kirkwood-Riseman theory to the
problem; and we employ Monte Carlo to compute the drag
and torque on a translating or rotating particle, which we
use to validate our EKR method. We present our results for
the rotational friction coefficient as a function of Knudsen
number and compare our results for Kn � 1 and Kn � 1 to
the continuum and free-molecule limits in Sec. III.

II. DRAG AND TORQUE ON A RIGID PARTICLE

Consider a rigid particle with center of mass moving at
velocity UO and rotating with angular velocity ω, where point
O is the origin of the system. For particles in Stokes (i.e., low
Reynolds number) flow, the force F and torque TO on the
particle are given by

F = −�t · UO − �
†
O,c · ω, (1)

TO = −�O,c · UO − �O,r · ω, (2)

where �t , �O,r , and �O,c are the friction tensors for transla-
tion, rotation, and translation-rotation coupling, respectively,
and �

†
O,c is the transpose of the coupling tensor. The coupling

and rotation tensors are defined with respect to the origin, O,
while the translation tensor is independent of the origin.

Brenner [12] proved that these friction tensors are related
to the translation, rotation, and coupling diffusion tensors by
the generalized Stokes-Einstein relation

DO = kTM−1
O , (3)
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where DO and MO are the 6 × 6 grand diffusion and friction
matrices given by

DO =
[

DO,t D†
O,c

DO,c Dr

]
, (4)

MO =
[

�t �
†
O,c

�O,c �O,r

]
. (5)

Rewriting Eq. (3) as MO · DO = kT I, where I is the identity
tensor, one can show that the translation, rotation, and coupling
diffusion tensors are related to the friction tensors by [12,18]

DO,t = kT (�t − �
†
O,c · �−1

O,r · �O,c)−1, (6)

Dr = kT (�O,r − �O,c · �−1
t · �

†
O,c)−1, (7)

DO,c = −kT �−1
O,r · �O,c

·(�t − �
†
O,c · �−1

O,r · �O,c)−1. (8)

According to Brenner [12], the translation and coupling
tensors are most meaningful when computed at the center
of diffusion. At this point D, the coupling tensor �D,c is
symmetrical. The vector from the origin to the center of
diffusion rOD can be expressed as [12,18]

rOD =
⎡
⎣D22

r + D33
r −D12

r −D13
r

−D12
r D11

r + D33
r −D23

r

−D13
r −D23

r D11
r + D22

r

⎤
⎦

−1

·

⎡
⎢⎣

D23
O,c − D32

O,c

D31
O,c − D13

O,c

D12
O,c − D21

O,c

⎤
⎥⎦. (9)

The translation and coupling tensors at the center of diffusion
are given by

Dt = DO,t − rOD × Dr × rOD

+ D†
O,c × rOD − rOD × DO,c, (10)

Dc = DO,c + Dr × rOD. (11)

Finally, we can write the scalar translational diffusion coeffi-
cient as [18]

Dt = kT /ζt = 1
3 Tr (Dt ), (12)

where ζt is the translational friction coefficient and Tr (Dt ) is
the trace of the translation diffusion tensor. Similarly, we can
define scalar rotational diffusion and friction coefficients as

Dr = kt/ζr = 1
3 Tr (Dr ). (13)

A. Kirkwood-Riseman theory

Based on the preceding discussion, one can fully describe
the translational and rotational behavior of a rigid particle,
provided one can obtain the translation, rotation, and coupling
friction tensors. We will now describe one approach for obtain-
ing those tensors for rigid particles consisting of N spherical
elements in the continuum regime. For this discussion, we will
consider the case where all N elements have the same radii
ai = a, though this need not be the case when applying the
general framework described here. We will later discuss how
to extend this approach to the transition flow regime.

Kirkwood and Riseman [23] demonstrated that the drag on
a particle in continuum flow can be calculated by considering
the hydrodynamic interactions between each pair of spheres
in the aggregate. Initially, hydrodynamic interactions between
spheres were calculated using the Oseen tensor. Later authors
introduced more sophisticated hydrodynamic interaction ten-
sors to account for the finite size of the spherical elements
[24,25] and for rotational and translation-rotation coupling
effects [26–28]. In all of these cases, the relationship between
the linear velocity ui and angular velocity ωi of the ith
spherical element and the force Fj and torque T j at the center
of each of the N elements is [20]

−ui =
N∑

j=1

Qt
ij · Fj +

N∑
j=1

(
Qc

ij

)† · T j , (14)

−ωi =
N∑

j=1

Qc
ij · Fj +

N∑
j=1

Qr
ij · T j , (15)

where Qt
ij , Qr

ij , and Qc
ij are the translation, rotation, and

coupling hydrodynamic tensors between the ith and j th
spherical elements. These tensors will be defined shortly.

This linear system of equations can be written in matrix
form as

−
[
UP

W

]
=

[
Qt (Qc)†

Qc Qr

][
F
TP

]
, (16)

whereUP ,W ,F , and TP are the 3N -element vector containing
the linear velocities, angular velocities, forces, and torques on
the N spherical elements and Qt , Qr , and Qc are the 3N × 3N

matrices of the translation, rotation, and coupling tensors for
all ij pairs. Note that subscript P indicates that the property is
evaluated at the center of each element. For example, the linear
velocity of the ith sphere that appears in UP is ui = uO + ω ×
r i , where r i = (xi,yi,zi) is the vector from the origin to the
center of the ith element. Inverting Eq. (16), we get[

F
TP

]
= −

[
St (Sc)†

Sc Sr

][
UP

W

]
, (17)

where [
St (Sc)†

Sc Sr

]
=

[
Qt (Qc)†

Qc Qr

]−1

. (18)

Carrasco and Garcıa de la Torre [20] show that the 3 × 3
submatrices of the 3N × 3N S matrices are related to the
translation, rotation, and coupling friction tensors in Eqs. (1)
and (2) by

�t =
N∑

i=1

N∑
j=1

St
ij , (19)

�O,r =
N∑

i=1

N∑
j=1

[
Sr

ij − Sc
ij · Aj + Ai · (

Sc
ij

)† −Ai · St
ij · Aj

]
,

(20)

�O,c =
N∑

i=1

N∑
j=1

[
Sc

ij + Ai · St
ij

]
, (21)
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where

Ai =
⎡
⎣ 0 −zi yi

zi 0 −xi

−yi xi 0

⎤
⎦. (22)

Carrasco and Garcıa de la Torre [20] summarize the
hydrodynamic theories of Reuland et al. [26], Mazur and
Van Saarloos [27], and Goldstein [28] and show that the
hydrodynamic interaction tensors Qt

ij , Qr
ij , and Qc

ij all agree

to order r−3
ij . These tensors are given by

Qt
ij = δij

ζt,0
I + 3(1 − δij )

4ζt,0

[
a

rij

(
I + r ij r ij

r2
ij

)

+ 2a3

3r3
ij

(
I − 3r ij r ij

r2
ij

)]
, (23)

Qr
ij = δij

ζr,0
I + (1 − δij )

2ζr,0

a3

r3
ij

[
3r ij r ij

r2
ij

− I
]
, (24)

Qc
ij = − (1 − δij )

ζr,0

a3

r3
ij

ε · r ij , (25)

where

ε · r ij =
⎡
⎣ 0 zij −yij

−zij 0 xij

yij −xij 0

⎤
⎦, (26)

δij is the Kronecker delta and ζt,0 = 6πμa and ζr,0 = 8πμa3

are the continuum friction and torque coefficients. Note that
the second term in Eq. (23) is the Rotne-Prager-Yamakawa
tensor [24,25],

Tij = 3

4ζt,0

[
a

rij

(
I + r ij r ij

r2
ij

)

+ 2a3

3r3
ij

(
I − 3r ij r ij

r2
ij

)]
. (27)

Carrasco and Garcıa de la Torre [20] determined that
including terms of order lower than r−3

ij in the interaction
tensors did not significantly improve results for the simple
shapes that they analyzed. Since the effect of these lower order
terms drop off rapidly for larger particles, we can safely ignore
these terms for the larger particles we will consider in this
paper.

B. Extension to the transition regime

We now wish to extend this Kirkwood-Riseman framework
to the transition flow regime. We start by multiplying Eqs. (14)
and (15) by the monomer friction coefficient ζt,0 and the
monomer torque coefficient ζr,0, respectively. As Rotne and
Prager [24] and Yamakawa [25] have noted, the product of the
Rotne-Prager-Yamakawa tensor and the Stokes’ law friction
coefficient is similar to the flow field Vij around a translating
sphere in Stokes flow,

v(r ij ) = Vij · U0, (28)

where

Vij (r ij ) = 3

4

[
a

rij

(
I + r ij r ij

r2
ij

)

+ a3

3r3
ij

(
I − 3r ij r ij

r2
ij

)]
. (29)

The difference between Vij and ζt,0Tij is a factor of 2 in the
r−3
ij term in ζt,0Tij .

Recently, Corson et al. [22] exploited the similarity between
Tij and the flow around a sphere to extend Kirkwood-Riseman
theory to the transition flow regime by solving for the velocity
around a sphere as a function of Knudsen number (Kn = λ/a,
where λ is the mean free path of molecules in the gas) and
substituting the resulting Vij (Kn)/ζt,0(Kn) for the second term
in Eq. (23). This gives the drag on the ith element of a purely
translating N -element particle as

Fi = −ζt,0(Kn)UO −
N∑

i �=j

Vij (Kn) · Fj . (30)

In this case, the translation hydrodynamic interaction tensor is
given by

Qt
ij (Kn) = 1

ζt,0(Kn)
[δij I + (1 − δij )Vij (Kn)]. (31)

Similarly, we show in Appendix A that the (1 − δij ) terms
in the rotation and coupling hydrodynamic interaction tensors
are directly related to the flow field around a rotating sphere.
Thus, solving for the velocity around and torque on a rotating
sphere in the transition flow regime would provide expressions
for Qr

ij (Kn) and Qc
ij (Kn). This approach should be accurate

to order r−3
ij , subject to the accuracy of the numerical solution

to the kinetic equation in the transition regime and the small
error introduced by omitting a factor of 2 in the r−3

ij term in
the translation hydrodynamic interaction tensor. (These errors
are discussed in our previous work [22,29].) To get the friction
tensors for a given particle, one would populate and invert the
6N × 6N Q matrix and apply Eqs. (19)–(21).

Alternatively, one can apply a simplified approach to
determine the friction and diffusion tensors for a particle
in the transition regime. Ignoring rotation and coupling
hydrodynamic interactions, the friction tensors are given by
[17,18]

�t = ζt,0

N∑
i=1

N∑
j=1

St
ij , (32)

�O,c = ζt,0(Kn)
N∑

i=1

N∑
j=1

r i × St
ij (Kn), (33)

�O,r = −ζt,0

N∑
i=1

N∑
j=1

r i × St
ij × rj . (34)

Here St is the inverse of the 3N × 3N translation matrix Qt

rather than a 3N × 3N block of the 6N × 6N Q matrix in
Eq. (16). This approach is equivalent to considering only the
linear velocity ω × r i of each spherical element and ignoring
their angular velocities. One obvious flaw of this method is
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that it predicts zero torque on a rotating sphere and on a chain
of spheres rotating around its long axis. García de la Torre and
Rodes [19] suggest adding Nζr,0 to the diagonal elements of
�O,r to partially compensate for this error.

For our transition flow regime calculations, we will ap-
ply the simplified approach given by Eqs. (32)–(34). This
avoids the need to solve the kinetic equation for a rotating
sphere in the transition flow regime and requires inverting
a 3N × 3N matrix instead of a 6N × 6N matrix. However,
we will apply the volume correction of García de la Torre
and Rodes [19] to the rotational friction tensor, using the
approximate expression for the ratio of the torque to the
free-molecule torque given by Loyalka [30] [Eq. (44) in that
work]. As we will demonstrate, the simplified approach is
sufficiently accurate for larger particles, for which the O(r−3

ij )
terms in the interaction tensors become less important.

C. Monte Carlo calculations for free-molecule drag and torque

In our previous work [22,29], we compared our results for
the translational friction coefficient to published experimental
data and analytical results for the transition flow regime.
Unfortunately, there is very little information on the rotational
diffusion tensor in the transition flow regime. In order to test
our extended Kirkwood-Riseman theory, we must compare to
results in the continuum and free-molecule limits. Continuum
results will be taken from published results in the literature
(where available) or obtained using the hydrodynamic in-
teraction tensors given by Eqs. (23)–(25). We now describe
our approach for calculating the friction tensors in the free-
molecule limit.

Previous authors [31–33] have used a ballistic approach to
calculate the drag on a translating particle in free-molecule
flow. We use the same approach, but now we consider both
translational and rotational motion, and we calculate both the
drag and the torque on the particle.

Our procedure is as follows. Consider the general case in
which the bulk gas velocity is a combination of translational
velocity UO in the positive x direction and angular velocity
ω about the x axis. (For small translational and angular
velocities, this is practically equivalent to a particle moving
with translational velocity UO in the negative x direction and
rotating with angular velocity −ω, but it is easier to consider
the case in which the particle is stationary [30].) Surround the
particle by a launch sphere with radius R, randomly select
starting locations on the surface of the launch sphere, and
define local coordinates (x�,y�,z�), where x� is the inward
normal for the position on the launch sphere. To determine
the momentum of gas molecules leaving the launch sphere,
sample from the distribution of velocities of gas molecules
entering the launch sphere,

f (cx� ,cy� ,cz� ) = Kcx�e−[c�−(UO+ω×R)�]2/2RT , (35)

where c� = (cx� ,cy� ,cz� ) is molecular velocity in the local
coordinate system, R and T are the gas constant and the gas
temperature, the bulk gas velocity UO + ω × R is written in
terms of local coordinates, and K is a normalization constant
defined such that∫ ∞

0
dcx�

∫ ∞

−∞
dcy�

∫ ∞

−∞
dcz� f = 1.

If the molecule trajectory intersects the particle, calculate the
momentum transfer for diffuse reflection from the surface. For
diffuse reflection, the molecule direction is sampled from a
cosine-squared distribution for the polar angle and an isotropic
distribution for the azimuthal angle, while the molecule speed
is sampled from the Maxwell-Boltzmann distribution

f (c) = 4π

√(
1

2πRT

)3

c2e−c2/2RT . (36)

Continue to follow the molecule trajectory until it exits the
launch and account for multiple collisions between the gas
molecule and the particle. After launching M molecules,
calculate the total drag and torque on the particle:

F = A

M

M∑
i=1

φi pi , (37)

T = A

M

M∑
i=1

φi r i × pi . (38)

Here A is the launch sphere surface area, pi is the momentum
transferred to the particle by the ith molecule, and r i is the
point at which the molecule collides with the particle. The
quantity φi is the flux of gas molecules entering the launch
sphere at Ri [34],

φi = n

√
RT

2π

{
e−s2 cos2 θi + √

πs cos θi[1 + erf(s cos θi)]
}
,

(39)

where n is the gas number density, s = U/
√

2RT is the ratio
of the bulk velocity to the molecular velocity in the gas, and θi

is the angle between the bulk velocity and the inward normal
to the launch sphere at Ri .

Using the above procedure, we determine the translation
friction tensor by setting the angular velocity of the flow field
equal to zero and calculating the drag Fx , Fy , and Fz for flow
in the x, y, and z directions. For a translation velocity much
less than the thermal speed

√
2RT , the friction tensor is

�t = 1

UO

⎡
⎣Fx

x F
y
x F z

x

F x
y F

y
y F z

y

F x
z F

y
z F z

z

⎤
⎦,

where F
y
x signifies the x component of the force on the particle

for flow in the y direction. The pure translation calculation (i.e.,
ω = 0) also gives the coupling tensor from the torque on the
particle per Eq. (2). Finally, we calculate the rotation friction
tensor by setting the translation velocity to zero and calculating
the torque for rotation about the x, y, and z axes.

We have tested our Monte Carlo drag and torque code
by comparing our results to published calculation results of
Mackowski [33] for the translational friction coefficient (taken
as the harmonic average of the eigenvalues of the friction
tensor) and by comparing to simple test cases (e.g., a sphere
rotating about its center, a sphere rotating about an axis at a
fixed distance from its center) for the torque problem. All of
our Monte Carlo results are in excellent agreement with results
from alternate calculation methodologies. (See Appendix B.)
Furthermore, our calculated translation and rotation friction
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tensors are symmetrical to within the error in the Monte
Carlo calculations. Thus, we can use our Monte Carlo code
to evaluate the results of our EKR results in the free-molecule
limit.

III. RESULTS

To verify that our extended Kirkwood-Riseman method
produces reasonable results across a wide range of Knudsen
numbers, we will compare our calculated rotational friction
coefficient ζr to its values in the continuum and free-molecule
limits. We first discuss the continuum and free-molecule
results.

A. Continuum regime

Before presenting our results for the rotational friction
coefficient in the transition flow regime, it is appropriate to
consider the effect of neglecting the rotational and coupling
hydrodynamic interaction tensors on ζr in the continuum.
This issue is discussed in depth in the works of Garcia de la
Torre and colleagues (e.g., Refs. [20,21]). We will be using
our EKR method to calculate the translation and rotation
friction coefficients of a dimer, a linear hexamer, and an
octrahedral hexamer, so we will briefly discuss the results of
Carrasco and Garcıa de la Torre [20] for these aggregates. We
will also provide continuum results for four different fractal
aggregates: N = 20, df = 1.78; N = 20, df = 2.5; N = 100,
df = 1.78; and N = 100, df = 2.5. These aggregates are
shown in Fig. 1. Note that these are the same aggregates that
we used in our earlier paper [22]. Also note that particles
formed by diffusion-limited cluster aggregation processes—
such as soot—have a fractal dimension of approximately
1.78.

Carrasco and Garcıa de la Torre [20] provide results of
various hydrodynamic interaction models for a dimer, linear
hexamer, and octrahedral hexamer. Our EKR method in the
continuum limit is nearly the same as the KRMV (Kirkwood-
Riseman with the RPY hydrodynamic interaction tensor and
the volume correction to the rotational friction tensor) method
described in that paper, with the only difference being the
factor of 2 in the O(r−3

ij ) term in Qt
ij . Presumably, the most

accurate computational results are obtained using the shell

FIG. 1. Representations of the fractal aggregates used in this study.

TABLE I. Continuum friction coefficient for fractal aggregates,
normalized by the monomer friction results. Friction coefficients are
calculated using terms up to order r−3

ij in the hydrodynamic interaction
tensors (3RD) or our extended Kirkwood-Riseman theory (EKR) in
the continuum limit.

Case ζ
c,3RD
t ζ

c,EKR
t ζ c,3RD

r ζ c,EKR
r

N = 20, df = 1.78 4.35 4.31 94.5 110.8
N = 100, df = 1.78 10.3 10.2 1292.0 1376.7
N = 20, df = 2.5 3.41 3.37 42.5 57.5
N = 100, df = 2.5 6.71 6.64 313.6 398.2

method, where each spherical element in the aggregate is
replaced by a large number of frictional units and hydro-
dynamic interactions are described using the Oseen tensor.
We will compare our extended Kirkwood-Riseman results
in the continuum limit to the shell method results for the
linear and octrahedral hexamers. Exact results are available
for a dimer in continuum flow [11], so we will compare
our extended Kirkwood-Riseman results to the exact values.
Based on Table II of Carrasco and Garcıa de la Torre [20], we
would expect our EKR results to underpredict the translational
friction coefficient (or overpredict the translational diffusion
coefficient) and overpredict the rotational friction coefficient.
We would expect better agreement for less compact aggregates,
like linear chains or fractals with df = 1.78, and better
agreement for the translational friction coefficient than for
the rotational friction coefficient.

Table I shows translational and rotational friction coeffi-
cients for the four fractal aggregates mentioned previously.
The table includes ζt and ζr computed using terms up to order
O(r−3

ij ) in the interaction tensors (the 3RD method described
by Carrasco and Garcıa de la Torre [20]) and using our
extended Kirkwood-Riseman method (EKR, where we use
the Stokes flow solution around a sphere for the translation
interaction tensor and set the coupling and rotation hydro-
dynamic interaction tensors to zero). Translational friction
results are normalized by Stokes’ law, ζt,0; rotational results
are normalized to the monomer rotational friction coefficient,
ζr,0 = 8πμa3.

The difference between ζ
c,3RD
t and ζ

c,EKR
t is small (<2%)

for the cases shown here. The difference in the rotational
friction coefficient is much larger, with the greatest differ-
ence (35%) occurring for N = 20, df = 2.5. The difference
decreases as the average distance between spheres increases
due to the reduced importance of the O(r−2

ij ) and O(r−3
ij ) terms

in the coupling and rotation interaction tensors, respectively.
These trends are consistent with the results of Carrasco and
Garcıa de la Torre [20] and García de la Torre et al. [21].

It is important to note that the 3RD method tends to
underpredict the rotational friction coefficient (or overpredict
the rotational diffusion coefficient) compared to more com-
putationally intensive methods like the shell model [20,21].
On the other hand, the EKR method appears to overpredict
the friction coefficient. In other words, the difference between
our EKR results in the continuum and the true value of the
rotational friction coefficient may be less than that suggested
by the results in Table I. We shall return to this subject in
Sec. IV.
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TABLE II. Free molecule results for fractal aggregates, normal-
ized by the monomer friction results.

Case ζ FM
t ζ FM

r

N = 2 1.832 3.829
N = 6, df = 1 5.056 16.46
N = 6, octahedron 4.157 21.57
N = 20, df = 1.78 14.48 443.9
N = 100, df = 1.78 64.37 12320
N = 20, df = 2.5 11.64 196.2
N = 100, df = 2.5 43.38 2713

B. Free molecule regime

We have computed the free-molecule translational and rota-
tional friction coefficients for the seven aggregates described
in the previous section. The results are shown in Table II;
the values in the table are normalized to the free-molecule
monomer translational and rotational friction coefficients,

ζ FM
t,0 = π (8 + π )

2.994

μ

λ
a2, (40)

ζ FM
r,0 = 2π

1.497

μ

λ
a4, (41)

where we have substituted the viscosity for a hard-sphere gas,
μ = 0.499ρc̄λ, into the expressions for ζ FM

t,0 and ζ FM
r,0 [15,35]

and assumed diffuse reflection at the surface of the sphere.
Our translation friction coefficient results are in excellent

agreement with published computational results for linear
chains [31] and for fractals with df = 1.78 [33]. We are
unaware of any published results for the denser particles or
for the rotational friction coefficients of any of the particles in
Table II.

For our free-molecule calculations, we sample 109 molec-
ular trajectories to ensure good statistical results. Each calcu-
lation takes less than 3 hours on a single processor, and the
CPU time increases linearly with the number of trajectories.
In general, our results are accurate to three or four significant
figures, based on multiple calculations performed for each
case. This level of accuracy is more than sufficient for most
practical applications.

C. Transition regime

We have performed our extended Kirkwood-Riseman cal-
culations for the seven particles discussed above for Knudsen
numbers ranging from 0.01 to 100. In our previous paper [22],
we reported the translational friction coefficient as a function of
Knudsen number for the fractal particles, calculated using the
harmonic mean of the eigenvalues of the translational friction
tensor �t . The difference between ζt computed using this
approach and ζt computed using Eq. (12) is less than 1%.

Figure 2 presents our results for the scalar rotational
friction coefficient ζr [defined in Eq. (13)] of a dimer, linear
hexamer, and octahedral hexamer. Results are presented as a
slip correction factor,

Cr (Kn) ≡ ζ c
r

ζ EKR
r (Kn)

, (42)

FIG. 2. Calculated rotational slip correction factor [defined by
Eq. (42)] for a dimer, linear hexamer, and octahedral hexamer. For the
dimer, the continuum value in the slip correction is the exact solution
from Happel and Brenner [11]; for the hexamers, the continuum
values are the shell method values (SHM) from Table II in Carrasco
and Garcıa de la Torre [20]. The free-molecule limit for each case
(dashed lines) is calculated using our Monte Carlo algorithm.

where the continuum rotational friction coefficient ζ c
r is

calculated using the best available method. (Cr is analogous
to the Cunningham slip correction factor, which represents
the ratio between Stokes’ law and the friction coefficient for
a sphere in the transition regime. It is also analogous to the
parameter �−1, defined by Zhang et al. [36] as the ratio of the
continuum friction coefficient to the transition regime friction
coefficient for an aggregate.) For the dimer, ζ c

r is given by the
exact solution to the Stokes equation [11]; for the hexamers, ζ c

r

is taken as the shell method solution from Carrasco and Garcıa
de la Torre [20]. The free-molecule limit for each particle is
shown as a dashed line. Note that the curves representing the
dimer and the linear hexamer nearly coincide due to the chosen
normalization used in the plot.

At small Knudsen numbers, the rotational friction co-
efficient approaches a constant value that differs from the
continuum value for the aggregate ζ c

r because our calculations
neglect rotational and coupling hydrodynamic interactions, as
discussed in Sec. III A and illustrated by the results in Table I.
At large Knudsen numbers, ζ EKR

r is in excellent agreement with
our Monte Carlo calculations for the free-molecule rotational
friction coefficient (within 5% at Kn = 100). The slight
discrepancy between the solid and dashed lines in the free-
molecule limit are due to numerical uncertainty in the Monte
Carlo calculations and interpolation error in applying our
results for the velocity around a sphere to Vij (Kn) in Eq. (30).
(Note that we use a Gaussian quadrature to solve for the
velocity within approximately 10 mean free paths of the sphere
surface. Thus, interpolation errors are most significant near the
free-molecule regime, where the sphere radius is comparable
to the node spacing.) These results suggest that rotational and
coupling interactions between primary spheres are negligible
at large Knudsen numbers, as one would expect due to the
nature of free-molecule flow.
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FIG. 3. Calculated rotational slip correction factor [defined by
Eq. (42)] for four fractal aggregates. The continuum rotational friction
coefficient that appears in the slip correction is calculated using the
3RD method, and the Knudsen-number-dependent friction coefficient
is calculated using our EKR method. The free-molecular limit for
each aggregate (dashed lines) is calculated using our Monte Carlo
algorithm.

Figure 3 presents our results for ζ EKR
r for the fractal

particles. Again, the results are plotted as a slip correction
factor, but in this case the continuum rotational friction
coefficient is calculated using the 3RD method. Note that the
two N = 20 curves appear to lie on top of each other, as
do the two N = 100 curves; again, this is due to the chosen
normalization.

As with the dimer and hexamers, our results for the fractals
are in excellent agreement in the free-molecule limit (dashed
line), while the errors in the continuum regime are up to 40%
because our method neglects rotational and coupling interac-
tions between monomers. This error decreases significantly
for larger, less-dense particles: for example, the difference
between our EKR results and the 3RD results for 100-sphere
sootlike fractal is less than 10%. The decrease can be attributed
to the reduced importance of the O(r−2

ij ) and O(r−3
ij ) terms in

the coupling and rotational interaction tensors, respectively,
relative to the O(r−1

ij ) term in the translational interaction
tensor. For larger, less-dense particles, the monomers are on
average spaced further apart than the monomers in a smaller,
denser aggregate, such that the translational hydrodynamic
interactions dominate.

Dahneke [37] and Zhang et al. [36] posited there exists for
the translational friction coefficient a universal relationship
between the friction coefficient in the transition flow regime
and an aggregate Knudsen number,

ζ c
t

ζt (Knagg)
= Cc(Knagg), (43)

where Cc is the Cunningham slip correction factor. Zhang et al.
[36] showed using dimensional analysis that the appropriate
aggregate Knudsen number for translational friction is

Knagg = πλRH

PA
, (44)

FIG. 4. Rotational slip correction factor plotted versus an aggre-
gate Knudsen number. The aggregate Knudsen number is the ratio of
the friction coefficient calculated as if the aggregate is in continuum
flow to the friction coefficient calculated as if the aggregate is in
free-molecule flow. Continuum friction coefficients are calculated
using the same reference method used to calculate the slip correction
factor Cr , while the free-molecule coefficients are calculated using
our Monte Carlo algorithm.

where RH and PA are the hydrodynamic radius and projected
area of the aggregate, which characterize particle size in
the continuum and free-molecule regimes, respectively. In
other words, the aggregate Knudsen number is proportional
to the ratio between the continuum and free-molecule friction
coefficients for the aggregate.

This adjusted sphere method implies that plots of the
aggregate translational slip correction factor [Eq. (43)] versus
the aggregate Knudsen number [Eq. (44)] fall on the same
universal curve, regardless of particle shape. Experimental
and computational studies [22,29,36,38,39] suggest that this
is indeed the case. Based on this evidence, we propose
that the rotational slip correction factor [Eq. (42)] should
exhibit similar behavior when plotted against an appropriate
aggregate Knudsen number. Since the translational aggregate
Knudsen number is proportional to the ratio of continuum to
free-molecule friction coefficients, we posit that the rotational
aggregate Knudsen number is

Knr,agg = ζ c
r

ζ FM
r

= 23.952

8 + π

ζ c�
r

ζ FM�
r

Kn, (45)

where Kn is the primary sphere Knudsen number and
ζ c�
r ≡ ζ c

r /ζ c
r,0 and ζ FM�

r ≡ ζ FM
r /ζ FM

r,0 are the dimensionless
continuum and free-molecule rotational friction coefficients
for the aggregate.

Figure 4 shows our rotational friction coefficient results
plotted as the rotational slip correction factor versus the
aggregate Knudsen number [Eq. (45)]. The dimensionless
continuum friction coefficients are calculated with the same
reference method used in Figs. 2 and 3 (i.e., the exact solution
for the dimer [11], the shell method for the hexamers [20],
and the 3RD method for the 20- and 100-particle aggregates).
The dimensionless free-molecule friction coefficients are
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calculated using our Monte Carlo algorithm. Roughly speak-
ing, all of the aggregates exhibit the same behavior when
plotted in this manner. The differences among the curves near
the continuum regime are likely due to neglecting rotational
and coupling hydrodynamic interactions when calculating the
rotational friction coefficient, as discussed previously. Errors
in the calculated continuum friction coefficient may also
contribute to the spread among the curves. Our results suggest
that the aggregate rotational friction coefficient follows some
universal function of the rotational aggregate Knudsen number.

IV. DISCUSSION

We have applied our extended Kirkwood-Riseman theory to
calculate the rotational friction coefficient for aerosol particles
in the transition flow regime. This approach ignores rota-
tional and translation-rotation coupling interactions between
spheres. These effects become less important as the number
of primary spheres increase and as the primary sphere size
decreases. The former effect is due to the dominance of the
O(r−1

ij ) term in the translational interaction tensor over the
lower-order terms in the rotational and coupling interaction
tensors. The latter effect occurs because smaller particles
perturb the flow field less than large particles.

Consistent with this discussion, our EKR results are
in excellent agreement with our Monte Carlo results for
large Knudsen numbers (i.e., within 5% for Kn = 100). The
agreement is not as good in the continuum regime: We have
observed errors as high as 40% for dense aggregates relative to
the rotational friction coefficient computed considering terms
up to order O(r−3

ij ) in the interaction tensors. The EKR results
are in better agreement with the 3RD results for less dense
fractal aggregates. It is also worth mentioning that the EKR
and 3RD methods respectively under- and overpredict the
rotational friction coefficient compared to the computationally
intensive shell method, so the rotational friction coefficient
computed using the EKR method is mostly likely in better
agreement with the true friction coefficient than our results in
Table I and Fig. 3 suggest.

Our results also suggest that there is a universal relationship
between the rotational friction coefficient and an aggregate
Knudsen number. This is analogous to relationship between
the translational friction coefficient and the aggregate Knudsen
number introduced by Dahneke [37] and Zhang et al. [36],
which is supported by experimental data and computational
results [22,29,36,38,39]. For the rotational friction coefficient,
the appropriate aggregate Knudsen number is the ratio of the
aggregate continuum and free-molecule friction coefficients.

We could improve the accuracy of our method—
particularly near the continuum regime—if we considered
pairwise rotational and coupling interactions between primary
spheres in the aggregate. As we have demonstrated, the
rotational and coupling interaction tensors are related to the
flow field around a rotating sphere; one could solve the kinetic
equation for flow around a rotating sphere as a function of
Knudsen number to obtain the appropriate interaction tensors
in the transition flow regime. With that said, our simplified
method is sufficiently accurate for most practical purposes—
particularly for larger aggregates with a fractal dimension of
1.78.

Finally, we will note that while we have focused exclusively
on the scalar friction coefficient, our method also provides
the translation, rotation, and coupling friction tensors. Thus,
our extended Kirkwood-Riseman method can be used when
considering alignment of aerosol particles in an external field
[3–6,16] or when simulating Brownian diffusion of small
particles.

APPENDIX A: RELATIONSHIP BETWEEN THE
ROTATION AND COUPLING TENSORS AND THE FLOW

AROUND A SPHERE

As mentioned in Sec. II B, the (1 − δij )r−3
ij and (1 − δij )r−2

ij

terms in the rotation and coupling hydrodynamic interaction
tensors are related to the flow around a sphere. We provide the
derivation in this appendix. Note that this derivation is similar
to the derivation of the lower-order terms in the method of
reflections [26,27].

We will start with the rotation hydrodynamic tensor Qr
ij .

Consider a sphere rotating in a quiescent fluid with angular
velocity ωj . This angular motion is sustained by applying a
torque T j = ζr,0ωj to the sphere. The velocity induced in the
fluid at a location r ij from the rotating sphere can be written
in spherical coordinates as

v(r ij ) = ωa3

r2
ij

sin θ êφ, (A1)

where êφ is the unit vector in the φ direction. The vorticity in
the fluid is

w(r ij ) = ∇ × v = ωa3

r3
ij

(2 cos θ êr + sin θ êθ ). (A2)

Converting to Cartesian coordinates and performing some
simple manipulations, we find that the vorticity can be written

w(r ij ) = a3

r3
ij

(
3r ij r ij

r2
ij

− I

)
· ωj . (A3)

A sphere placed in the fluid at r ij would rotate with angular
velocity ωi = 1

2w(r ij ) [11], which can be written

ωi =
[

1

2ζr,0

a3

r3
ij

(
3r ij r ij

r2
ij

− I

)]
· T j . (A4)

The term in square brackets is the (1 − δij ) term in the rotation
hydrodynamic interaction tensor [Eq. (24)], proving that the
rotational interaction between two spheres is related to the
vorticity of the flow field around a rotating sphere.

We now turn our attention to the coupling tensor Qc
ij .

Consider a sphere translating through a quiescent fluid with
velocity uj due to some external force Fj = ζt,0uj . The
vorticity at point r ij in spherical coordinates is

wj = −3

2

a

r2
ij

uj sin θ êφ . (A5)

We can write this more generally as

wj = −3

2

a

r3
ij

uj × r ij = 3

2

a

r3
ij

r ij × uj . (A6)
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We can write the cross product r ij × uj as Aij · uj , where
Aij = −ε · r ij , such that the vorticity becomes

wj = −
(

3

2

a

r3
ij

ε · r ij

)
· uj . (A7)

Again, a sphere placed in the fluid at r ij would rotate with
angular velocity equal to half the vorticity,

ωj = −
(

3

4

a

r3
ij

ε · r ij

)
· Fj

6πμa
. (A8)

Rearranging and introducing ζr,0 = 8πμa3, we get

ωj =
(

−ε · r ij

ζr,0

a3

r3
ij

)
· Fj . (A9)

The term in parentheses is the coupling interaction tensor Qc
ij

given by Eq. (25). This shows that the O(r−2
ij ) term in the

translation-rotation coupling interaction tensor is given by the
vorticity in the flow field for a translating sphere.

Alternatively, we can derive the coupling tensor by con-
sidering the velocity field around a rotating sphere given by
Eq. (A1). Writing the velocity using the cross product r ij × ωj

and converting the cross product to −(ε · r ij ) · ωj , the velocity
becomes

v(r ij ) = a3

r3
ij

(ε · r ij ) · ωj . (A10)

Writing this equation using the torque applied on sphere j to
maintain the angular velocity ωj , we see that the fluid velocity
at r ij is

v(r ij ) =
(

ε · r ij

ζr,0

a3

r3
ij

)
· T j . (A11)

The term in parentheses is the transpose of Qc
ij as written in

Eq. (25), which shows that the O(r−2
ij ) term in (Qc

ij )† is given
by the velocity field around a rotating sphere.

APPENDIX B: MONTE CARLO DRAG AND
TORQUE RESULTS

We have developed a Monte Carlo algorithm to compute
the drag and torque on an N -sphere aggregate in the free-
molecule regime. The algorithm is described in Sec. II C.

Here, we compare the results of our Monte Carlo algorithm
to exact results (where available) and to the drag results of
Mackowski [33].

1. Drag on a translating sphere

The drag on a sphere in creeping flow in the free-molecule
regime F0 is given by Epstein’s equation [35]. For purely
diffuse reflection, our Monte Carlo algorithm gives the drag
as FMC = 1.001F0, and thus our MC results are in very good
agreement with the exact solution.

2. Drag on an aggregate

Mackowski [33] developed a correlation for the drag on a
fractal aggregate as a function of the number of monomers
N , the fractal dimension df , and the fractal prefactor k0.
The correlation is based on the results of his own Monte
Carlo calculations. Using Mackowski’s correlation (Eq. (68)
of Ref. [33]), the translational friction coefficients, normalized
by Epstein’s equation, for 20- and 100-sphere aggregates with
df = 1.78 and k0 = 1.3, are 14.15 and 64.23, respectively.
In comparison, our Monte Carlo results for the 20- and
100-sphere aggregates with these fractal dimensions are 14.51
and 64.58, respectively. Thus, our MC results are in very good
agreement with Mackowski’s correlation.

3. Torque on a rotating sphere

Epstein [35] calculates the torque on a sphere rotating about
an axis through its center. Using our Monte Carlo algorithm,
we get T MC = 0.995T 0, which is in very good agreement with
the exact value.

For a sphere rotating slowly around an axis located a
distance R from its center, the magnitude of the torque is
given by

T = ζt,0ωR2 + ζr,0ω. (B1)

In other words, the torque is the sum of the torque on a sphere
rotating about its center with angular velocity ω and the torque
due to the linear velocity of the sphere center ωR moving at
a distance R from the origin. Our Monte Carlo results for the
torque for R = a and R = 2a are 3.763ζr,0ω and 12.15ζr,0ω,
respectively, where a is the sphere radius. These results are
in very good agreement with the exact results T = 3.785ζr,0ω

and T = 12.14ζr,0ω for a sphere rotating around an axis R = a

and R = 2a from its center.
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