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a b s t r a c t 

We present calculations of light scattered by simulated aligned and randomly oriented fractal aggregates 

of touching spheres. The alignment by an applied electric field is in the direction yielding the minimum 

energy associated with the polarizability of the aggregate. This direction is also within a few degrees of 

the direction associated with the smallest inertial eigenvalue. Aggregates were generated to have a frac- 

tal dimension of 1.78 (characteristic of diffusion–limited cluster-cluster aggregation) and to simulate the 

range of aggregate sizes (30 to 20 0 0) and size distributions for post-flame generated soot by a range of 

hydrocarbon fuels. More nearly monodisperse aggregates were also generated to simulate the size dis- 

tributions obtained via mobility or mass classification. We show that a ratio of slopes computed from 

small angle light scattering intensities (Guinier plots) is related to the shape parameter A 31 , which is the 

ratio of the largest to the smallest principle radii of gyration of the inertia tensor. A geometric interpre- 

tation of the overall shape is presented based on the semi-axes of an ellipsoid. Results on the correlation 

between the maximum structure factor ratio { S ( q )} a / { S ( q )} r for the monodisperse and polydisperse clus- 

ters and the average value of A 31 indicate that light scattering measurements in the q range of fractal 

behavior would also be feasible for shape characterization. Our calculations indicate that light scattering 

measurements have a good potential for characterizing aggregate shape with an advantage of being more 

sensitive to shape than mobility measurements. 

Published by Elsevier Ltd. 
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. Introduction 

Aerosol aggregates are generated by building fires and wild-

and fires; by high temperature processes such as diesel engines,

melters, and pulverized coal combustion; and in the production

f fine particles including carbon black, fumed silica, and titania

8] . It has been found that the morphology of aerosol aggregates

ormed by such processes can be described by the equation: 

 = k 0 ( R g /a ) d f , (1) 

here d f is the fractal dimension, N is the number of spheres in

he aggregate, R g , the aggregate radius of gyration, and a the radius

f the primary spheres. For this study, the primary sphere radius

s assumed to be the same for every sphere in a given aggregate. 

Theoretical and experimental studies have demonstrated the

mportance of the fractal dimension in describing the trans-

ort (diffusion, electrical mobility, phoretic processes), aggregate
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rowth (diffusion limited cluster-cluster aggregation), and opti-

al properties including the q dependence of light scattering [31] .

here has been relatively little research characterizing the over-

ll shape of aggregates other than measurements by electron mi-

roscopy. The simulation results presented here suggest that light

cattering measurements from aligned and randomly oriented ag-

regates can be used to determine the shape parameters for both

onodisperse and polydisperse aggregates. 

While there have not been many experimental studies of the

hape parameter, there have been a number of studies of aggre-

ate alignment in a strong field. The aggregates become aligned in

n orientation that minimizes their energy in the field [10,20] . This

ffect has been demonstrated experimentally by placing aggre-

ates in an external electric field and measuring changes in scat-

ered light intensity [3,5,29] or electrical mobility [16,19,21,30] as

he field strength changes. Calculations of electrical mobility ver-

us field strength based on an extended Kirkwood Riseman the-

ry [6] are in good agreement with published experimental data

or soot [21] , which show an increase in mobility on the order of

% from random to aligned orientations. Filtration is another area

here aggregate alignment could be important. Chen et al. [4] ob-

https://doi.org/10.1016/j.jqsrt.2018.07.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
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served as much as a factor of 1.6 higher penetration of silver ag-

gregates relative to silver spheres with the same mobility with in-

creasing face velocity to the filter. They attribute the higher pen-

etration to increased alignment which might result from the in-

creased velocity gradient in the 1 μm pore of the Nucleopore fil-

ters. 

There have been several studies of aggregate shape based on

computer simulations. Fry et al. [9] computed the shape anisotropy

for simulated clusters carrying out off-lattice Monte Carlo simula-

tions for diffusion-limited cluster-cluster aggregation (DLCA) with

up to 3 × 10 6 monomers. The shape anisotropy is defined in terms

of ratio of the squares of the largest to smallest principle radii of

gyration, A 31 , and in terms of the semi major axes ( a,b,c ) of the

corresponding ellipsoid. We will use the same characterization of

shape in our study. They obtain average values of 3.70 and 3.09

for A 31 and c / a for the dilute limit corresponding to a cluster vol-

ume fraction less than about 0.1. The shape anisotropy distribution

is asymmetric, extending out to values as large as 15 with, appar-

ently, an exponential decay for large A 31 . 

Heinson et al. [13] carried out DLCA calculations similar to

those of Fry et al. and computed the structure factor S ( q ) in ad-

dition to A 31 for each aggregate. In their analysis, they assumed a

pair correlation function that depends on only the radial distance

between all the spheres in the aggregate with the following form:

g ( r ) = C r d f −3 exp 

(
−( r/ξ ) 

γ
)

(2)

The cutoff function includes a so called stretching exponent γ .

From the functional relationship between S ( q ) and g ( r ), Heinson

et al. obtained a correlation between the value of A 31 for each clus-

ter and the best fit value of γ for each cluster. The authors point

out that the value of the exponent γ can serve as a shape factor

in place of A 31 . Heinson et al. [13] also show that the value of the

fractal prefactor k 0 determined for each cluster is correlated with

each value of A 31 . 

Lindsay et al. [22] also carried out DLCA simulations and char-

acterized the aggregate anisotropy by expanding the orientation

averaged structure factor in terms of spherical harmonics. The

largest term in expansion shifted to a larger order spherical har-

monics with increasing value of q. The normalized S ( q ) was found

to be independent of aggregate size (scale invariant) for DLCA clus-

ters. One important application of their analysis was the calcula-

tion of the contribution of rotational diffusion to quasielastic light

scattering. 

Mulholland et al. [25] generated fractal aggregates using the

DLCA code developed by Heinson and computed A 31 and S ( q ) for

both randomly oriented and aligned clusters. The slopes of 1/ S ( q )

vs q 2 were computed for small q for both orientations. A strong

correlation was obtained between the ratio of the random orienta-

tion slope to the aligned orientation slope and the value of A 31 for

the aggregate. The light scattering intensity integrated over an an-

gle range between about 7 ° and 173 ° for simulated soot aggregates

with 300 primary spheres was computed for both the random and

aligned orientation. The ratio of the intensity for the two orien-

tations, about 2, was in qualitative agreement with experiments

[5,29] . The magnitude of the effect suggested that such measure-

ments could be useful for studying the presence of soot as well as

changes in the shape of the soot particles. 

The current study is an extension of the previous study by Mul-

holland et al. [25] to include the effect of polydispersity on the

shape anisotropy inferred for small and large q , to quantify the

alignment direction of the aggregates, and to display the shape in-

formation graphically. A significant motivation for this study is the

much larger effect of alignment on the light scattering intensity

compared to the electrical mobility. To provide more realistic sim-

ulation results, two size distributions close to those observed ex-
erimentally were considered: A nearly monodisperse size distri-

ution similar to that obtained by size selection based on electrical

obility or mass [26] and a large polydispersity such as observed

n soot from buoyant turbulent diffusion flames [17] . 

In the previous study, it was assumed that the alignment direc-

ion was along the principal axes of the inertia tensor. However,

he aggregates are aligned in the direction corresponding to the

owest polarizability energy of the aggregate. Thus it is the prin-

iple axes of the polarizability tensor that control the orientation.

n this study, both sets of principal axes are determined. Also, in

he previous study, the power law slope for the large q behavior

or the aligned aggregate was about −3.0 for a 10 0 0 sphere aggre-

ate compared to a value of −1.78 for the random orientation. The

enerality of this initial observation will be assessed. 

A fundamental difference from the previous studies is that the

alculation of the aligned S ( q ) from the pair correlation function

equires the vector pair correlation function. Previous studies men-

ioned above [9,13,22] are based on an average over all orienta-

ions, which leads to a scalar pair correlation function. 

. Theory 

The prediction of the effect of orientation on the light scatter-

ng by clusters is based on computing the orientation of the cluster

n the electric field together with the calculation of the structure

actor. Both of these topics have been explored in previous publi-

ations [6,20,21] so only a brief summary of the key results will

e presented. A key element of this study is including the effect of

he polydispersity of the cluster distribution for providing results

elevant to both flame-produced aggregates and to size classified

ggregates studied in the laboratory. The equations previously de-

ived for single aggregates are modified for application to polydis-

erse aggregates. The limit of small q is of special interest for as-

essing the shape of the aggregates and the analysis given by Mul-

olland et al. [25] is extended to include this case. 

.1. Alignment 

The probability distribution of a particle’s orientation in an

lectric field is given by the Boltzmann distribution [10] , 

f ( φ, θ, ψ ) = 

e −U/ kT 

2 π∫ 
0 

π∫ 
0 

2 π∫ 
0 

e −U/ kT sin θd φ d θ d ψ 

(3)

here U is the energy of the particle in the electric field for the

article orientation given by the Euler angles ( φ, θ , ψ). As shown

n Corson et al. [6] , we can explicitly write the interaction energy

f a cluster in an electric field 

�
 E as 

 = − 1 
2 

(
sin 

2 ψ sin 

2 θ α1 + cos 2 ψ sin 

2 θ α2 + cos 2 θ α3 

)
E 2 (4)

here α3 > α2 > α1 are the eigenvalues of the polarizability

ensor. The lowest energy corresponds to θ = 0. Eq. (4) assumes

hat the particle is perfectly conducting, which is reasonable even

or aerosol particles composed of non-conducting materials due

o their small size and the presence of contaminants [10] . In this

nalysis, we assume the electric field is either strong enough that

he cluster is fully aligned or weak enough for all orientations to

e equally probable. We obtain the polarizability tensor for each

article in this study using the ZENO code [24] , which uses a ran-

om walk algorithm to compute various properties of a particle

onsisting of spherical subunits. We then determine the eigenval-

es and eigenvectors of the polarizability tensor and choose our

ody-fixed coordinates for each particle such that the x - and z -

xes correspond to directions (i.e. eigenvectors) associated with the

argest and smallest eigenvalues, respectively. 
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Table 1 

Angle between the eigenvectors corresponding to the minimum eigenvalue of the inertia 

tensor and the maximum eigenvalue of the polarizability tensor for 20 isomers for each 

value of N . In all cases, the fractal dimension and prefactor are 1.78 and 1.3, respectively. 

N Minimum angle Maximum angle Average angle Standard deviation 

26 0.20 13.82 4.01 3.56 

55 0.46 5.96 2.58 1.76 

99 0.73 6.55 2.77 1.76 

197 0.16 8.53 2.13 1.97 

402 0.32 12.92 2.83 2.77 

800 0.91 7.86 3.05 1.79 

1946 0.58 4.36 2.03 0.98 
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Fig. 1. Schematic of light scattering geometry with the z –y plane the scattering 

plane. The orientation of a simple cluster with the major principal axis along the 

x -direction and the minor principal axis in the z -direction is shown. 

i

H

 

t  

a  

a  

m  

u

2

 

s  

b

〈

〈

w  

t  

i  

e  

r  

o  

t  

i

w  
Another alignment direction of interest in regard to small angle

cattering, is the direction of the smallest principal radius of gyra-

ion of the inertia tensor for the aggregates. As indicated in Table 1

or clusters ranging from 26 spheres to 1946 spheres, the direction

f the lowest dipole-field interaction energy and the direction as-

ociated with the smallest inertial eigenvalue are typically within

 few degrees. Exceptions to this rule occur for particles that are

airly isotropic, such that the eigenvectors of the polarizability ten-

or are more sensitive to uncertainty in the ZENO calculations than

ore elongated particles. Note that in this study, we only use the

nertia tensor to calculate the parameter A 31 , which can be thought

f as a measure of particle shape. (See Supplementary Material,

vailable online, for more detailed information about the difference

etween the inertia and polarizability tensor eigenvectors.) 

.2. Scattering cross section for aggregates 

The structure factor of an aggregate of touching spheres in the

ayleigh–Gans–Debye limit can be written as: 

 

(
�
 q , � φ, N 

)
= N 

−2 
N ∑ 

i, j 

e i � q ·( � r i −�
 r j ) , (5) 

here N is the number of spheres in the cluster and 

�
 φ represents a

et of Euler angles for the initial orientation of the cluster relative

o the space fixed axes located at the center of mass of the cluster.

he orientation averaged structure factor is expressed as 〈 S( � q , N ) 〉 or 

here either random orientation (subscript r ) or aligned orienta-

ion (subscript a ) are considered here. In the generation of clusters

f N primary spheres, more than one structure is formed and the

isomer” number is referred to as i with the maximum value i s . 

The differential cross section of the orientation averaged cluster

er isomers is given by: 

d σ agg ( � q , N ) 

d


〉
or 

= 

d σ R 

d

N 

2 
i m ∑ 

i =1 

〈 S ( � q , N, i ) 〉 or 

i m 

, (6) 

here the Rayleigh differential scattering cross section, σ R , is ex-

ressed in terms of the refractive index m , the radius of the pri-

ary sphere r , and the wave number k . 

d σ R 

d

= k 4 r 6 

∣∣∣∣m 

2 − 1 

m 

2 + 2 

∣∣∣∣
2 

(7) 

This cross section corresponds to the polarization direction of

he incident light being perpendicular to the scattering plane. It is

onvenient to use a reduced version of the differential cross sec-

ion expressed by: 

 or ( � q , N ) = 

〈
d σ agg ( � q , N ) 

d


〉
or 

/ 

d σ R 

d

(8) 

For a polydisperse distribution of aggregates with fraction f ( N )

f aggregates with N primary spheres, the reduced cross section
s 

 or,p = 

∫ N max 

N min 

( 

i m ∑ 

i =1 

f ( N ) N 

2 〈 S ( � q , N, i ) 〉 or 

i m 

) 

dN 

= 

∫ N max 

N min 

f ( N ) H or ( N ) dN (9) 

The polydispersity relates to the number of primary spheres in

he aggregate and not to the size of the primary spheres, which

re all assumed to have the same diameter. In this analysis, it is

ssumed that the aggregates are far enough apart that there is no

ultiple scattering among aggregates. This is the quantity that can

ltimately be compared with experimental data. 

.3. Limit of small q 

As shown in Mulholland et al. [25] , the orientation averaged

tructure factor in the small q limit for a single aggregate is given

y 

 

S ( � q , N ) 〉 r = 1 − 1 

3 

q 2 ( R g ( N ) ) 
2 
, for random orientation (10) 

 

S ( � q , N ) 〉 a = 1 − 1 

2 
q 2 

(
Y 2 + Z 2 

)2 = 1 − 1 

2 
q 2 

(
R 2 1 

)2 
, for aligned orientation 

(11) 

here Y 2 = 

∑ 

y 2 
i 
/N and R 2 

1 
the principle radius of gyration about

he x -axis, which corresponds to the principal axis of the polar-

zability tensor. The incident light is in the z -direction while the

lectric field is in the x -direction ( Fig. 1 ). Eq. (10) is a well known

esult [12] and Eq. (11) is a consequence of only the y components

f the particle coordinates contributing to the light scattering in

he small angle limit. Of course, Z 2 appears because we are rotat-

ng around the x -axis; if we had a fixed orientation, then only Y 2 

ould appear. Averaging over the isomers for the aligned orienta-
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tion gives: 

i m ∑ 

i =1 

〈 S ( � q , N, i ) 〉 a 
i m 

= 1 − 1 

2 

q 2 
〈
( R 1 ( N ) ) 

2 
〉
i 

(12)

For the case of random orientation, the value of R g ( N ) is inde-

pendent of the isomer number because of the way the aggregates

are generated: for the user-specified number of spheres N , frac-

tal dimension d f , and prefactor k 0 , the ( x,y,z ) coordinates of each

sphere have been generated using the Mackowski algorithm [23] . 
Substituting Eq. (10) for the random orientation and Eq. (12) for

the aligned orientation into Eq. (9) , the following expressions are
obtained for the reduced light scattering cross section for polydis-
perse aggregates with isomers: 

H r,p ( q ) = 

∫ N max 

N min 

f ( N ) N 

2 
(

1 − 1 

3 
q 2 ( R g ( N ) ) 

2 
)

dN = 

〈
N 

2 
〉(

1 − 1 

3 
q 2 R 2 g, 2 

)
, (13)

Here, 〈
N 

2 
〉
= 

∫ N max 

N min 

f ( N ) N 

2 dN (14)

R 

2 
g, 2 = 

(∫ N max 

N min 

f ( N ) N 

2 R 

2 
g ( N ) dN 

)/ 〈
N 

2 
〉

(15)

The subscript 2 regarding the radius of gyration refers to the N 

2 

term in the sum. 
The corresponding expression for the aligned orientation is

given by 

H a,p ( q ) = 

∫ N max 

N min 

f ( N ) N 

2 
(

1 − 1 

2 
q 2 

〈
( R 1 ( N ) ) 

2 
〉
i 

)
dN = 

〈
N 

2 
〉(

1 − 1 

2 
q 2 R 2 1 , 2 

)
, 

(16)

where R 

2 
1 , 2 = 

(∫ N max 

N min 

f ( N ) N 

2 
〈
( R 1 ( N ) ) 

2 
〉
i 
dN 

)/ 〈
N 

2 
〉

(17)

In Eq. (17) , an average over the isomers for a given value of N is

computed first before averaging over the values of N . This approach

is valid because there are the same number of isomers for every

aggregate size. 

From the 1st two terms of the Taylor expansion of the inverses

of Eq. (13) and (16) for small q , one obtains: 〈
N 

2 
〉

H r,p 
= 1 + 

1 

3 

q 2 R 

2 
g, 2 (18)

〈
N 

2 
〉

H a,p 
= 1 + 

1 

2 

q 2 R 

2 
1 , 2 (19)

These equations are in the form for Zimm plots of the inverse

of the intensity versus the square of the appropriate radius of gyra-

tion. It is of interest to look at the correlation between the ratio of

slopes for 1/ H q vs q 2 (for the random and aligned orientations) and

the average of A 31 , which is the ratio of the largest to the small-

est principal radii of gyration. A strong correlation was observed

in a previous study for monodisperse aggregates [25] . For a poly-

disperse distribution, the calculated slope ratio from the Rayleigh–

Gans–Debye calculations should match the theoretical slope ratio,

SR = 

2 

3 

R 

2 
g, 2 

R 

2 
1 , 2 

(20)

To facilitate comparison between the slope ratio and A 31 for a

distribution of particles, we define the average A 31 as the ratio of

the average of the largest inertia tensor eigenvalue to the average

of the smallest inertia tensor eigenvalue: 

A 31 = 

R 

2 
3 , 2 

R 

2 
1 , 2 

(21)
Here, R 2 
1 , 2 

is defined by Eq. (17) , while R 2 
3 , 2 

is defined similarly,

ith the largest principal radius of gyration replacing the smallest

rincipal radius of gyration in the equation. 

. Simulations 

For this study, we have calculated the structure factor for par-

icles with fixed, aligned, and random orientations. All particles

ave been generated using the Mackowski algorithm [23] . All cal-

ulations are performed for a wavelength of 630 nm and a pri-

ary sphere radius of 15.5 nm. Unless noted otherwise, the par-

icles have fractal dimension and prefactor equal to 1.78 and 1.3,

espectively. 

The structure factors for a given particle are calculated as fol-

ows. First, we write the particle coordinates in terms of the body-

xed axes corresponding to the principal axes of the polarizability

ensor. Next, we determine the aligned structure factor by rotat-

ng the particle around the major axis and calculating S(q) for 36

rientations evenly spaced in the interval [0,2 π ]. S a (q) is the av-

rage of the structure factor for these 36 orientations. Finally, we

etermine the randomly-oriented structure factor S r (q) by averag-

ng S(q) from Eq. (5) for 10 0 0 particle orientations; orientations are

hosen in ten-equally spaced bins in the intervals [0,2 π ], [0,1], and

0,2 π ] for φ, cos θ , and ψ , respectively. The Eulerean transforma-

ion tensor [11] is used to calculate the coordinates for the rotated

ggregate about one axis for the aligned case and about all three

xes for the random orientation. 

We have also determined the light scattering intensity for nar-

ow distributions (e.g. from a DMA) and for a broad distribution,

uch as what one might obtain by sampling from the overfire re-

ion of a diffusion flame. For these distributions, the reduced light

cattering cross-section from randomly-oriented particles is given

y Eq. (13) , where f ( N ) is the probability density function for the

istribution in terms of the number of monomers in a particle. For

he narrow (i.e. DMA) distributions, we use a lognormal PDF with

g = 1.08 and N g corresponding to the nominal DMA mobility. (See

he Supplemental information – available online – for an explana-

ion of how σ g is determined.) For the broad distribution, we use

 lognormal PDF with N g = 226 and σ g = 3, which is representative

f overfire soot from turbulent diffusion flames [17] . 

. Results 

.1. Orientation averaged 

The orientation averaged structure factor 〈 S( � q , N 10 0 0 ) 〉 or for ran-

om orientation has the expected power slope of - D f ( −1.78) for

ggregates ranging in size from 100 to 20 0 0 as seen in Fig. 2 a;

owever, for the aligned orientation, there is a less well defined

ower law dependence and an eyeball fit gives a steeper slope in

he range of −2.5 to −3 for the larger two clusters. The smaller

wo aggregates are too small to estimate a power law exponent.

his difference in q dependence was previously presented by Mul-

olland et al. [25] . 

.2. Aggregate “isomers”/Averaging 

The results in Fig. 2 a are for a single aggregate. Multiple aggre-

ates were generated with the same number of primary sphere.

ach one has a different structure with a different set of eigenval-

es for the polarizability tensor. The structure factor 〈 S( � q , N, i ) 〉 or 

s shown in Fig. 3 for 20 isomers for aggregates with 300 spheres

nd 10 0 0 spheres. There is a much broader band of curves for the

ligned orientation compared to the random orientation. For the

argest aggregates, there is a broad spread in the structure factors
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Fig. 2. Structure factor vs. q for aggregates with N = 30, 10 0, 30 0, and 10 0 0. Results 

are shown for single particles (top) and for the averages of 20 isomers (bottom). 

The solid lines represent the results for the random orientation, while the dashed 

lines represent the aligned orientation. The solid gray lines are proportional to q –1.78 

and are shown for comparison. 

Fig. 3. Comparison of S ( q ) for random and aligned orientations for 20 isomers with 

N = 300 (top) and N = 1000 (bottom). The dark, thick lines represent the average of 

the 20 isomers. 

Fig. 4. Comparison of the structure factor ratio for 299-sphere aggregates ( k 0 = 1.3) 

with different measures of A 31 . The 20 isomers with N = 299 are binned according 

to A 31 , then the average S a ( q ) and S r ( q ) are calculated for each bin. The grey, vertical 

line at q = 0.0033 nm 

−1 (corresponding to 1/ R g ) shows that the peaks in the ratios 

are beyond the Guinier regime. 

Fig. 5. Maximum structure factor ratio (i.e. the peak value in a plot of 

〈 S ( q ) 〉 a / 〈 S ( q ) 〉 r ) for all particles in the broad particle size distribution (20 isomers 

each for 39 aggregate sizes). For comparison, results for the broad cluster size dis- 

tributions (with k 0 = 0.95, 1.3, and 1.83) are shown as solid circles. 
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ikely resulting from differences in short range structure. The aver-

ge of the 20 isomer values are also plotted in Fig. 3 and for the

 aggregates sizes shown in Fig. 2 . Such averaging occurs in light

cattering measurements of aggregates produced by high tempera-

ure processes such as soot produced by flames. 

.3. Shape correlations 

To assess the relationship between the aggregate shape and the

tructure factor we have plotted the ratio 〈 S ( q, N, A 31 ) 〉 a / 〈 S ( q,N,

 31 ) 〉 r vs q in Fig. 4 for N = 299 and k 0 = 1.3. The 20 values of the

tructure factors were binned according to A 31 and then the two

verages were computed for each bin. It is seen that there is a cor-

elation between the peak slope ratio and the value of A 31 . Fig. 5

hows the correlation between the maximum structure factor ratio

i.e. the peak value in a plot of 〈 S ( q ) 〉 a / 〈 S ( q ) 〉 r ) for all particles in

he broad particle size distribution (20 isomers each for 39 aggre-

ate sizes) vs. A 31 for each aggregate. The results show a positive

orrelation between the “stringiness” of a particle and the maxi-

um ratio of light-scattering intensity between aligned and ran-

om orientations. 

.4. Polydisperse aggregates 

The reduced light scattering intensity H or,p ( q ), which is averaged

ver both the size distribution and isomer distribution, is plot-

ed in Fig. 6 for a lognormal distribution of aggregates ( N g = 226,
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Fig. 6. Comparison of monodisperse distribution for two different values of N (226 

and 493) with the results for the polydisperse case (( N g = 226 and σ g = 3). 

Fig. 7. Light scattering intensity from a broad lognormal aggregate size distribu- 

tion ( N g = 226 and σ g = 3). The solid lines represent the random particle orienta- 

tion, while the dashed lines represent aligned aggregates. Results are shown for 

distributions involving aggregates with three different prefactors. For all cases, the 

fractal dimension is 1.78. 

Table 2 

Fits to the exponential region of the H vs q results for 

broad distributions with various primary sizes and pref- 

actors in the fractal equation. The fits are based on re- 

sults for q > 0.01. 

Case A 31 Fit exponents 

Random Aligned 

a = 15.5 nm, k 0 = 0.95 4.32 −1.77 −2.34 

a = 15.5 nm, k 0 = 1.3 3.88 −1.87 −2.44 

a = 15.5 nm, k 0 = 1.83 3.55 −1.86 −2.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Ratio of light scattering intensity from aligned aggregates to the intensity 

from randomly-oriented aggregates having a broad lognormal distribution ( N g = 226 

and σ g = 3). Results are shown for distributions involving aggregates with three dif- 

ferent prefactors. For all cases, the fractal dimension is 1.78. 

Fig. 9. Normalized light-scattering intensity for a narrow distribution of aggregates 

( σ g = 1.08). Solid and dashed lines represent randomly-oriented and aligned ag- 

gregates, respectively. Results for the distributions are indistinguishable from the 

monodisperse cases with the number of primaries equal to N g from the distribu- 

tion. 
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σ g = 3) along with the isomer averaged plots for N = 226 and for

N = [ 〈 N 

2 〉 ] 1/2 = 493. In all three cases the large q slopes are nearly

identical. The second choice (i.e. N = 493) provides a better fit for

small q; the polydisperity causes the smaller curvature at interme-

diate q compared to the monodisperse case. In Fig. 7 it is seen that

the slopes at large q for the random orientation (1.77 to 1.87; see

Table 2 ) are close to the value of 1.78 obtained for the individual

aggregates, while the slopes for the aligned cases are larger, about

2.3, though not as large as obtained for individual aggregates. For

a fixed q , the reduced light scattering intensity is smallest for the

largest value of R g . The smallest value of the prefactor gives the

largest R g as seen from the fractal equation. This explains the or-

dering of the intensity curves in Fig. 7 . 

A more detailed illustration of the effect of shape on the struc-

ture factor for the polydisperse distribution given above is the plot

of H a,p ( q )/ H r,p ( q ) for three values of the prefactor in Fig. 8 . The ra-

tio increases by about 5% as the prefactor decreases from 1.83 to

0.95, while the increase in A is about 25%. It is also seen that
31 
he peak shifts to smaller q with decreasing prefactor because of

he larger radius of gyration from the stringier structures. As seen

n Fig. 5 , the maximum structure factor ratio for the three values

orresponding to the polydisperse distributions results lie below

he monodisperse results. 

We have also the computed the light scattering intensity for

he case of a more nearly monodisperse aerosol, such as the nar-

ow distribution produced by passing a polydisperse population of

ggregates through an electrical mobility classifier. (Note that we

re ignoring the effects of multiply-charged particles.) As shown in

ig. 9 , the structure factor for the narrow polydisperse case is al-

ost identical with using a single value of N equal to the geomet-

ic mean number of primary spheres averaged over 20 isomers. For
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Fig. 10. Zimm plot for the broad distribution of aggregates ( N g = 226 and σ g = 3). 

The symbols represent the results from the RDG calculations, while the solid 

lines represent the theoretical small q behavior for random and aligned aggregates 

Eqs. (18) and (19) . Note that the average A 31 and slope ratio for the distribution are 

3.88 and 2.79, respectively. 

Fig. 11. Correlation between the slope ratio and A 31 . The small symbols represent 

the values for each case in the broad size distribution (20 isomers each for 39 

aggregate sizes from N = 26 to N = 1946). Results are shown for all three prefac- 

tors (0.95, 1.3, and 1.83) included in this study. The solid line is the best fit to 

the results, given by SR = 0.680 A 31 + 0.116. The large circles represent the average 

slope ratio and A 31 for the broad distribution, with each circle representing a dif- 

ferent prefactor. The average slope ratio and A 31 for the distributions are defined by 

Eqs. (20) and (21) , respectively. 
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Fig. 12. Representation of two aggregates with N = 10 0 0 monomers. The dotted line 

represents an equivalent prolate ellipsoid. The figures on the left show projections 

of each sphere in the aggregate, while the figures on the right show the center of 

each sphere as it is rotated around the principal axis of the polarizability tensor. 

Note that the aggregates at the top and bottom of the figure have A 31 = 6.2 and 2.4 

and c/ 
√ 

a 2 + b 2 = 2.3 and 1.3, respectively. 
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he narrow polydisperse case, the distribution included 7 values of

 (covering approximately 90% of the lognormal distribution) each

ith 20 isomers. 

.5. Small angle scattering for shape anisotropy 

Fig. 10 shows good agreement between the between the pre-

icted ( Eq. (19) ) and computed small angle scattering Zimm plots

or the broad and narrow size distributions. The simulation results

xceed the model prediction with increasing q with up to 16%

verestimate over the entire range and about 8% eliminating the

argest values of q . The linear region moves to smaller and smaller

 as the aggregate size increases for the broad distribution. The

maller range in q for linear dependence on q 2 for the polydisperse

ase results from the dominant scattering coming from the larger

ggregates. 

Fig. 11 shows that there is a good correlation between the slope

atio, SR, which is the ratio of slopes 1/ H q vs q 2 for the random and

ligned orientations, and the value of A 31 . The solid line in the fig-

re represents the best linear fit to the results for all aggregates in

he broad size distributions (with prefactors of 0.95, 1.3, and 1.83):

R = 0 . 680 A 31 + 0 . 116 (22)
The standard deviation of the points relative to the best linear

t is of 0.060 with R 2 for the fit equal 0.9949. It is also seen for

he broad polydisperse case that the computed value for SR and

he intensity weighted average value of A 31 is close to the linear

orrelation. 

.6. Ellipsoid representation of aggregate 

It is of interest to have a geometric description of the shape

arameter A 31 . The relationships between lengths of the semi-axes

 a > b > c ) of an ellipsoid with the same radii of gyration as the

ggregate are given by: 

 

2 
3 , 2 = ( 1 / 5 ) 

(
a 2 + b 2 

)
(23) 

 

2 
2 , 2 = ( 1 / 5 ) 

(
a 2 + c 2 

)
(24) 

 

2 
1 , 2 = ( 1 / 5 ) 

(
b 2 + c 2 

)
(25) 

These three equations can be solved up to a multiplicative con-

tant by equating the mass of the aggregate to the mass of ellip-

oid. 

( 4 / 3 ) π r 3 0 N = ( 4 / 3 ) πabcρ (26) 

Fig. 12 shows a comparison of the resulting ellipsoid with the

ggregate coordinates. The dashed line represents the ellipse with

emi-axes a and ( b 2 + c 2 ) 1/2 . This square root expression accounts

or the orientation average about the a axis. We must know the

umber of primaries to obtain the ellipsoid. We can do that for the

imulation. Experimentally one could estimate the number from

he measured radius of gyration and the primary sphere diame-

er or from the aggregate mass together with the primary sphere

adius. 
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5. Discussion 

As discussed in Section 1 , there is generally a slight differ-

ence in the direction of the aggregate for lowest energy in an

electric field and the direction associated with the largest iner-

tial eigenvalue. We have calculated SR (slope ratio) for alignment

using both the polarizability and inertia tensors; the maximum

difference is less than 6%, while the average difference between

SR calculated with these two alignment directions is less than 1%

for each aggregate size in the broad size distribution ( N = 26 to

N = 1946, k 0 = 1.3). Thus, there is little difference in the small q re-

sults whether we use the polarizability or inertia tensor to com-

pute the alignment direction. This comparison has only been made

for aggregates generated by the Mackowski algorithm. We expect

this result to also be true for DLCA aggregates, but we have not

verified this. 

Fig. 11 shows a strong correlation between the slope ratio SR

computed in the small angle limit for Zimm plots and A 31 for in-

dividual aggregates generated with the Mackowski algorithm. The

theoretically predicted value of SR involves only the squares of

principal radii of gyration about the various axes in the numera-

tor and denominator and is closely related to A 31 . These principal

radii of gyrations provide an overall geometric description of the

aggregate that appears to be independent of the detailed fractal

structure. For example, in a more realistic simulation of aggregate

growth based on DLCA [25] , the slopes of SR vs A 31 (0.671 for 227

clusters with 30 spheres each and 0.675 for 137 clusters of 300

spheres each) were within about 1% of the value for Fig. 11 (0.680,

see Eq. (22) ). It is also of interest that the 3 values of SR vs A 31

computed for a broad distribution of aggregates, such as observed

downstream of a buoyant turbulent diffusion flame (Koylu), are in

line with the correlation plot in Fig. 10 . This suggests that small

angle measurements would be a good way to monitor the inten-

sity weighted value of A 31 and also allow one to estimate the three

principal radii. 

The larger the aggregate, the smaller the scattering angle re-

quired to measure the slope from the Zimm plot. In Mulholland

et al. [25] , the estimated minimum angle required to have three

evenly spaced points in terms of q 2 would be 2 ° for clusters with

10 0 0 spheres ( R g = 630 nm) and 1 ° for clusters with 1830 spheres

( R g = 880 nm). This estimate is based on a wavelength of 630 nm,

a primary sphere radius of 15.5 nm, d f = 1.78, and k 0 = 1.3. Wang

et al. [28] have carried out aerosol measurements at angles as

small as this with a system that could be modified to include

an electric field. Performing S ( q ) measurements for narrowly dis-

tributed aggregates will be challenging because of the small scat-

tering intensity; however, the interpretation of the results will be

more quantitative. It may also be possible to measure S ( q ) of single

clusters over a time interval small compared to the rotation time

of 1–5 ms for the smoke agglomerates studied by Colbeck et al.

[5] and Weiss et al. [29] . Such scattering measurements have been

made on individual polystyrene spheres as small as 0.2 μm by Dick

[7] and by Wyatt Aerosol Systems [2] . These measurement would

provide a nearly direct comparison of the structure factor without

orientation averaging. 

Small angle measurements could provide tests of DLCA shape

calculations by Fry et al. [9] for soot aggregates and Jullien’s the-

ory [ 14 ] on the effect of the polarizability on aggregate shape

for aerosol aggregates. An extreme case of interest would be the

flame-generated Fe 2 O 3 chain aggregates with aspect ratios as large

as 40 [3,10] . Other aerosol systems where small angle measure-

ments would be useful for shape changes are the effect of sintering

for metal aggregates such as silver [15] , and the effect of coatings

on soot aggregates [1,27] . 

As discussed in the Introduction, previous studies have estab-

lished the feasibility of obtaining light scattering data from iron
xide chains at about 30 °and for an integrated signal for soot from

bout 8 ° to 172 ° for aligned soot. It is likely that differential light

cattering measurements of aligned aggregates can be made over

he range 10 ° to 160 °,since light scattering measurements have

een made on unaligned soot over this range [18] . Such measure-

ents would allow the determination of max [ 〈 S ( q ) 〉 a / 〈 S ( q ) 〉 r ] for

ggregates of about 50 spheres to more than 20 0 0 based on a pri-

ary sphere radius of 15.5 nm and a wavelength of 630 nm. We

elieve that the correlation between this intensity ratio and A 31 

 Fig. 5 ) is strong enough to be useful in monitoring the shape of

ggregates though not as strong or as directly related to the shape

arameter A 31 as the small angle measurements. 

Heinson et al. [13] relate the shape factor to the stretched ex-

onent γ in their three parameter characterization of fractal ag-

regates. They use a bottom-up approach starting with the pair

orrelation function that depends on only the radial distance be-

ween all the spheres in the aggregate. Such an approach does not

llow one to compute the structure factor for an aligned cluster

hat rotates in only one direction such as shown in Fig. 4 for 20

lusters with the same number of primary spheres. To do such a

alculation requires the 3-dimensional pair correlation function. In

ur approach, we calculate the structure factor as a function of the

ggregate orientation and then average over either one angle for

he aligned orientation or all three Euler angles for the random

rientation. We then look for features in the q dependence of the

tructure factor that correlate with A 31 . For small q a direct correla-

ion is found. For large q an intensity ratio is found that correlates

ith A 31 . This is an empirical approach treating the simulation like

n experiment. There is a need to elucidate the properties of the

-D pair correlation function that determine the structure factor in

nalogy to what Heinson et al. have carried out for the scalar pair

orrelation function. The value of A 31 provides an overall shape fac-

or; however, it is based on a uniform density. A full description of

he shape requires the 3-D pair correlation function. 

. Conclusions 

A linear correlation was obtained for small q between the slope

atio SR (obtained from Guinier plots for the structure factor S ( q ))

nd the shape parameter A 31 for individual aggregates with frac-

al dimension of 1.78 and aggregate sizes ranging from 26 to 1946

pheres. The slope ratio is within 1% of the correlation obtained by

ulholland et al. [25] based on aggregates generated by DLCA sim-

lations. For polydisperse distributions of aggregates similar to that

f soot ( N g = 226 and σ g = 3) for 3 values of the prefactor, the com-

uted values of SR and the average of A 31 (see caption for Fig. 11 )

all on the correlation line. The results obtained for the narrowly

istributed aggregates characteristic of mobility or mass classifica-

ion are nearly identical to the results obtained for single value of

 averaged over 20 isomers. 

For the above aggregate range, the direction of the lowest

ipole-field interaction energy and the direction associated with

he smallest inertial eigenvalue are typically within a few degrees.

his result is crucial to obtaining a strong correlation between the

atio of slopes and A 31 . The reason for the good agreement for the

irection of the principle axes of the inertial and polarizability ten-

or is worthy of more study. 

A correlation is obtained between the maximum structure fac-

or ratio (i.e. the peak value in a plot of 〈 S ( q ) 〉 a / 〈 S ( q ) 〉 r ) for all ag-

regates in the broad particle size distribution (20 isomers each

or 39 aggregate sizes) vs. A 31 for each aggregate. The peak in the

tructure factor ratio corresponds to the fractal range for q in terms

f the randomly oriented aggregates. For some experiments, this

ay be a more convenient range of q compared to the small q

ange, which has a stronger correlation to the aggregate shape. 
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Previous measurements [3,5,29] have demonstrated that it is

easible to measure the light scattering intensity alternately of

ligned and randomly oriented aggregates at a frequency of at least

0 Hz. Our analysis indicates that these measurements can be ex-

anded to provide the q dependence of the structure factor for

oth small (Guinier regime) and large q (fractal regime). The po-

ential for new insight of aggregate shapes is a major impetus of

his paper. It is likely that such measurements would be more sen-

itive to aggregate shape than mobility measurements. 

Two geometric representations of the overall aggregate struc-

ure are presented. Both are derived from the principle moments

f inertia of the aggregates. Measurements of the light scattering

ntensity for small q are shown to be related to these principle mo-

ents of inertia. 

Previous studies of shape have focused on the randomly ori-

nted aggregate. We have shown that more detailed shape infor-

ation is obtained by including both aligned and random orienta-

ions. The basic difference between the two orientations is that the

ligned structure factor is a vector quantity related to the 3-D pair

orrelation function while the random structure factor is a scalar

elated to the scalar pair correlation function. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jqsrt.2018.07.019 . 
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