Downloaded via UNIV OF CALIFORNIA RIVERSIDE on December 9, 2020 at 19:19:25 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JAIC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

High-Temperature Pulse Method for Nanoparticle Redispersion

Hua Xie,” Min Hong,# Emily M. Hitz, Xizheng Wang, Mingjin Cui, Dylan J. Kline, Michael R. Zachariah,
and Liangbing Hu*

Cite This: J. Am. Chem. Soc. 2020, 142, 17364-17371 I:I Read Online

ACCESS | [l Metrics & More | Article Recommendations ‘ @ Supporting Information

ABSTRACT: Nanoparticles suffer from aggregation and poisoning
issues (e.g.,, oxidation) that severely hinder their long-term applications.
However, current redispersion approaches, such as continuous heating in
oxidizing and reducing environments, face challenges including grain
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procedures. Herein, we report a facile and efficient redispersion process 2
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that enables us to directly transform large aggregated particles into N
nanoscale materials. In this method, a piece of carbon nanofiber film was
used as a heater and high treatment temperature (~1500—2000 K) is
rapidly elevated and maintained for a very short period of time (100 ms), followed by fast quenching back to room temperature at a
cooling rate of 10° K/s to inhibit sintering. With these conditions we demonstrate the redispersion of large aggregated metal oxide
particles into metallic nanoparticles just ~10 nm in size, uniformly distributed on the substrate. Furthermore, the metallic states of
the nanoparticles are renewed during the heat treatment through reduction. The redispersion process removes impurities and
poisoning elements, yet is able to maintain the integrity of the substrate because of the ultrashort heating pulse time. This method is
also significantly faster (ca. milliseconds) compared to conventional redispersion treatments (ca. hours), providing a pragmatic
strategy to redisperse degraded particles for a variety of applications.

Degradation after long-time use |

B INTRODUCTION Additionally, reported redispersion approaches have generally
focused on noble-metal particles, which regain their metallic
states more easily. Nonprecious transition metals, which
undergo more severe ag§regation and oxidation issues, are
more difficult to address.”” Finally, these approaches are not

Nanoparticles, although widely employed in various domains
such as batteries and catalysis,' > face severe degradation
issues after long operation times.”” Such degradation generally

stems from the morphology changes of nanoparticles as they ol £ 1 I by carbon.based 1
aggregate and coalesce into larger particles, which can practical for nanoparticles supported by carbon-based materials

. 6
compromise performance.~® Although smaller nanoparticles (a common catalytic platform),” as carbon substrates cannot

do not always possess high catalytic performance,""® an be stable under high-temperature oxidative environments.

average particle size of ~10 nm or less is necessary to
guarantee sufficient active sites. Additionally, some metal B RESULTS AND DISCUSSION
nanoparticles gradually become oxidized or chlorinated during
long-term operation.m_17 These poisonous impurities are
frequently adsorbed on active sites and block routes.'®™*'
Redispersing agglomerated particles generally requires heat
treatment in a first oxidative and then reducing atmosphere,
which is typically conducted at heating rates of a maximum of
10 °C/min to a thermostatic plateau at 600—1000 K. After
treatment, the samples are slowly cooled down to room
temperature, and this process is generally cycled to achieve an
observable decrease in particle size,”” thus lengthening the
processing time. Additionally, redispersion highly depends on
the dimensions of the coalesced particles, with larger materials
taking even longer.”””* Particles possess better migration
capability at higher temperature;25 however, sintering will
inevitably occur at such temperatures under prolonged
treatment, particularly in reducing environments.”® As a result,
conventional redispersion techniques with continuous and
excessive heat input neutralize the effectiveness of redispersion.

To overcome these challenges, we have designed a novel high-
temperature pulse-based approach to redispersion in which a
piece of carbon nanofiber film (CNF) was used as a heater. We
rapidly elevate the heating temperature up to 2000 K while
shortening the treatment duration time to just ~100 ms,
followed by quenching to room temperature at a fast cooling
rate of 10° K/s. In this manner, we were able to convert
nanoparticles that had become aggregated (several hundred
nanometers to tens of micrometers in size) after catalytic use
back into nanoscale particles that continued to retain their
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good dispersion after treatment (Figure la). The high
temperature enables the fast mobility of the metal atoms for
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Figure 1. (a) Schematic demonstrating the high-temperature pulse
method for nanoparticle redispersion. A controlled current pulse was
applied to instantaneously generate a high-temperature environment,
dispersing aggregated particles to nanoscale components. (b)
Transmission electron microscopy (TEM) images of the morphology
of Pt nanoparticles before and after the high-temperature pulse
treatment.

improved dispersion, while the heating and quenching
durations are short enough to inhibit the occurrence of
particle growth. Figure 1b presents the comparison of platinum
nanoparticles before and after redispersion, which present a
uniform distribution after the high-temperature pulse treat-
ment and the oxygen reduction performance after the
redispersion presents pronounced improvement (Figure Sl,
Supporting Information). This high-temperature pulse ap-
proach applies not only to noble metals but also to

nonprecious transition metals. This approach can be applied
to various substrates, including carbon, making it widely
applicable for redispersing various catalytic materials.

To demonstrate this pulse redispersion technique, as proof-
of-concept we investigated copper nanoparticles since they are
promising as catalysts for various reactions in the petrochem-
ical industry.”®**' We employed an amorphous CNF film as
the nanoparticle redispersion microheater (see Methods for
details). The CNF film was carbonized at a low temperature
(580 °C) to maintain a high resistivity. Its resistance was
carefully tuned by controlling its dimensions to enable the
generation of high temperature via Joule heating, which helps
redipserse and reduce the aggregated nanoparticles. The CNF
film also functioned as the carbon substrate for the particle
redispersion. We applied a controlled transient current to the
CNF film for ~100 ms to instantaneously elevate the local
temperature to ~1800 K in an argon atmosphere. The
temperature was measured by imaging the light emitted from
the Joule-heated CNF film using a high-speed spectrometer
camera and fitting the spectrum with an adjusted blackbody
radiation relation. After the high-temperature pulse, the
substrate rapidly cools to ambient temperature at a rate of
10° K/s.

Figure 2a shows a scanning electron microscopy (SEM)
image of the large copper oxide (CuO) particles (2—20 ym in
size) that we premixed with carbon nanofibers (CNFs) via
sonication. Figure 2b shows a transmission electron micros-
copy (TEM) image of the resulting nanoparticles on the CNF
substrate after the high-temperature pulse redispersion, which
causes a reduction in the average particle size down to 11 nm.
The inset of Figure 2b presents the electron diffraction pattern
of the Cu nanoparticles, in which two polycrystalline
diffraction rings indicate the (111) and (200) planes of the
nanocrystals, respectively, verifying the crystallinity of the
redispersed Cu nanoparticles. The X-ray diffraction (XRD)
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Figure 2. Characterization of Cu nanoparticle redispersion on a CNF substrate after the high-temperature pulse. (a) SEM image of the large CuO
particles. (b) TEM image of the redispersed Cu nanoparticles anchored on the CNF substrate. The inset image demonstrates the electron
diffraction rings of the Cu nanoparticles. (c) XRD pattern of the Cu nanoparticles confirms the reduced metal after regeneration. (d) EDX mapping
of the Cu nanoparticles on the CNF substrate. (e, f) Particle size distribution of the CuO particles (e) before and (f) after redispersion.
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Figure 3. Temperature dependence of the particle size distribution. (a)—(d) The transient temperature profiles of the CNF films, which reach
high-temperature plateaux of 1380, 1600, 1800, and 1950 K, respectively. The heating duration was maintained for each sample at 100 ms. (e)—(h)
Temperature distribution mapping of the CNF films during each high-temperature hold. (i)— (1) TEM images of the redispersed Cu nanoparticles
and their size distribution at the different temperatures. (m) Relationship between the average particle size and temperature. The average particle
size decreases with temperature up until 1800 K, at which point the average particle size begins to increase. (n) Schematic to illustrate the transient

redispersion process.

patterns of the particles before and after the high-temperature
pulse treatment are presented in Figure 2c, confirming the
successful reduction of CuO to Cu nanoparticles in the
redispersion process. The XRD results show that the
diffraction peaks at 43.2° and 50.3° correspond to (111) and
(200) planes, which corroborate the electron-diffraction
observations in TEM. Scanning transmission electron micros-
copy (STEM) images and energy-dispersive X-ray spectro-
scopic (EDS) mapping in Figure 2d further illustrate the
uniform distribution of Cu nanoparticles on the carbon
substrate. The statistical distribution of the particle diameters
before and after the high-temperature pulse treatment, both of
which exhibit typical Gaussian shape, are illustrated in Figure
2e,f. The average diameter of the nanoparticles after

17366

redispersion was reduced from 8.7 + 2.9 ym to 11.6 + 4.3
nm. Inductively coupled plasma mass spectrometry (ICP-MS)
was carried out to evaluate the Cu element retention, the result
of which showed that the Cu ratios before and after
redispersion were 17.3% and 14.2%, respectively, which
demonstrates that 82% of the Cu loading was retained. We
observed no obvious change in the Raman spectra of the CNF
substrate as a result of the 100 ms high-temperature pulse,
indicating the good stability of the substrate during treatment
(Figure S2). Our approach creates a transient high temperature
in a short time, which helps the amorphous carbon to react and
reduce the CuO to Cu nanoparticles. Before the occurrence of
particle reagglomeration, the sample is already quenched to
room temperature.

https://dx.doi.org/10.1021/jacs.0c04887
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Figure 4. Universality of the high-temperature pulse method for various metal oxide and metal nanoparticles before and after redispersion,
respectively, including (a) Fe,O; and Fe, (b) Co;0, and Co, and (c) NiO and Ni. (d) Statistics of the particle size change before (blue) and after

(red) treatment.

The pulse temperature has a pronounced effect on the
dispersing dimensions of the resulting nanoparticles. To study
the impact of the heating temperature, we conducted the
redispersion process using various heating currents and further
characterized the samples by TEM. The current duration was
carefully controlled at 100 ms, which is long enough to achieve
a stable high-temperature plateau. We measured the temper-
ature evolution profile of the CNF films, which we controlled
by tuning the power source to achieve average plateau
temperatures of 1380, 1600, 1800, and 1950 K [parts (a),
(b), (c), and (d), respectively, of Figure 3). Parts (e), (f), (g),
and (h) of Figure 3 show the general temperature distribution
of the CNF films at these four different temperatures,
respectively. The morphologies of the Cu nanoparticles after
these different pulsed temperature treatments are shown in
Figure 3i—] along with the corresponding size distributions,
revealing an obvious temperature dependence.

17367

Figure 3m illustrates the relationship between the pulse
temperature and average particle size. Increasing the peak
temperature from 1380 to 1800 K increases the dispersion
effect as the average Cu nanoparticle size decreases. At ~1800
K the nanoparticles reached a minimum average particle size
compared to the other temperatures studied. We attribute this
to the high mobility and migration capability of the metal
atoms along the substrate surface induced by the high transient
temperature. However, because of the competition between
the atom movement and recoalescence, an increase in
temperature to 1950 K resulted in a slight enlargement in
the nanoparticle sizes. We hypothesize that the local bonding
between the metal atoms and substrate cannot restrain atoms
with high kinetic energy at higher temperature. Even though
the average particle size at 1950 K is similar to that at 1380 K,
the overall distribution morphology is not the same. Under the
1950 K condition, more of the nanoparticles are aggregated
and sintered into larger ones, which we believe accounts for the

https://dx.doi.org/10.1021/jacs.0c04887
J. Am. Chem. Soc. 2020, 142, 17364—17371
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* demonstrating the significantly shorter reaction time and higher heating temperature of our technique. (e) A radar plot showing a

comparison between high-temperature pulse and continuous heat approaches to nanoparticle redispersion. (f) Schematic for the fast redispersion

process of supported nanoparticle catalysts.

disappearance of ultrasmall particles. Similarly, the average
distance between nanoparticles after the redispersion treatment
at 1950 K is larger than that at 1380 K. Figure 3n provides a
schematic of the fast redispersion process in which the oxide
particles were broken down and redispersed/reduced as
smaller nanoparticles.

Our redispersion method also demonstrates good universal-
ity in terms of materials. Figure 4a—c displays the morphology
evolution of iron oxide (Fe,0,), cobalt oxide (Co;0,), and
nickel oxide (NiO) particles before and after redispersion
treatment at 1800 K for 100 ms. Though these starting metal
oxide particles feature relatively large sizes from 0.1 to 10 pm,
they still can be successfully dispersed by the high-temperature
pulse treatment. The XRD patterns of these nanoparticles after
treatment further confirmed their phase transition from
oxidation states to metallic states (Figure S3). Note that all
the three metals present face-centered cubic (fcc-Cu) structure
owing to the quenching effect at a high-speed cooling rate. To

better illustrate the redispersion capability for different
particles, we plotted the size changes of the particles before
and after redispersion (Figure 4d). The average particle sizes
have decreased from several micrometers to ~15 nm, which
further confirmed the effectiveness of this high-temperature
pulse method.

The high-temperature pulse technique can also help to
eliminate some impurity elements. As chlorine poisoning can
lead to the deactivation of nanoparticles for many reactions, its
removal is critical to regain the active sites. Under the extreme
heat generated by the high-temperature pulse technique, the
chlorine can be effectively driven out of the nanoparticle.
Figure Sa shows a TEM image of Cu nanoparticles redispersed
from CuCl, particles in which the chlorine atoms are
successfully eliminated with the help of the high-temperature
treatment (Figure S4). This approach can also be applied on
oxide substrates with good stability at high temperature for a
short time, such as a-Al,O;. Figure Sb,c presents the scanning

https://dx.doi.org/10.1021/jacs.0c04887
J. Am. Chem. Soc. 2020, 142, 17364—17371
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transmission electron microscopy high-angle annular dark-field
(STEM-HAADF) images at different magnifications of Cu
nanoparticles redispersed on porous a-Al,O; substrates via the
high-temperature pulse method. Because of the higher atomic
number (Z) of copper, the nanoparticles appear brighter in
contrast to the Al,O; particle substrate in the HAADF mode.
The Cu particle sizes can be effectively dispersed to under 10
nm with excellent uniformity via the high-temperature pulse at
the temperature 1800 K for 100 ms. Redispersion on various
substrates is presented in Figures S5—S8, including Ketjen-
black carbon, reduced graphene oxide, and mesoporous silica.
The dispersity of the nanoparticles demonstrates a pronounced
dependence on the substrate, suggesting the need to tailor the
high-temperature pulse treatment conditions.

Figure 5d presents a comparison of our work with results of
previous particle redispersion studies.”””>” Among these
studies, our approach possesses the highest temperature and
the shortest heating duration, making it a unique ultrafast
redispersion process. A detailed procedure comparison is
shown in Figures S9, S10, and Table S1. Figure Se compares
some key features of our high-temperature pulse treatment
with standard continuous heating treatment utilizing a tube
furnace. Compared to the standard continuous heating
treatment, our approach shows advantages in processing
simplicity, sintering suppression, and heat efficiency, which
has the potential for fast redispersion applications. Figure S5f
shows a schematic envisioning the direct redispersion
engineering for commercial supported nanoparticle catalysts
without further sophisticated particle—substrate separation.
Carbon rods penetrate through the hollow voids of the
substrates, on which the nanoparticle catalysts are degraded
after long-term operation and the high-temperature pulse
approach can effectively regenerate the nanoparticles on the
porous substrates.

B CONCLUSION

In conclusion, we report a facile redispersion technique for
nanoparticles. We employed a CNF film as a heater and the
treatment temperature was elevated to ~1500—2000 K to
enhance redispersion. The heating duration was kept to ~100
ms, followed by a fast quenching process at a cooling rate of
10° K/s. Microscale particles were redispersed to the nanoscale
and retained good uniformity. The amorphous carbon
nanofiber film helped remove impurity elements during high-
temperature pulse such as oxygen from the particles,
regenerating them to their metallic state. Temperature profiles
of the process can be tailored to vary the size and distribution
of nanoparticles. For copper nanoparticles, the redispersion
average sizes present a first decrease and then increase trend
when the pulse temperature plateau varies from 1380 to 1950
K. Furthermore, the high-temperature pulse process is
extremely rapid, which helps inhibit reagglomeration of the
nanoparticles. Compared to current redispersion techniques
based on continuous heating, our approach demonstrates the
highest treatment temperature and shortest heating duration,
which makes it a unique, ultrafast redispersion process. Our
pulse redispersion technique also presents a universal and
effective strategy for the redispersion of nanoparticle materials
on different substrates and for a variety of applications.

B METHODS

Preparation of CNF Films. An 8% by mass solution of
polyacrylonitrile (PAN) (Sigma-Aldrich) in dimethylformamide

(DMF) was electrospun at a voltage of 10 kV, a spinning distance
of 15 cm, and a feeding rate of 1 mL/h. The as-spun nanofibers were
collected by a rotation drum at a speed of 80 rpm. The electrospun
film was then converted into CNFs by stabilizing in air at 280 °C for §
h and carbonizing at 580 °C in an argon atmosphere.

Redispersion of Metal Nanoparticles. To make a CNF high-
temperature heater, we connected a piece of CNF film with
dimensions of 10 mm X 30 mm X S0 um to copper electrodes and
used silver paste to glue the film to the electrodes. The CNF film also
functioned as the substrate for the nanoparticle redispersion. All metal
oxides powders were purchased from Sigma-Aldrich: copper(II)
oxide, iron(II1) oxide, cobalt(ILIII) oxide, and nickel(II) oxide. Metal
oxides were weighed to 10 mg to mix with 10 mL of ethanol and
sonicated for ~1 h. A 10 uL suspension was transferred with a pipet
and dropped on the substrates. For alumina and other substrates,
oxide powders were mechanically mixed with substrates and grinded
with mortar. The mixed powder was spread uniformly on the surface
of the CNF heater. A current pulse was applied to the heater in an
argon-filled glovebox using an external Keithley 2425 Source Meter to
generate Joule heating. A Keithley 2400 source meter was employed
to control the heating time. The source meter was connected to a
Volteq HY 6020EX power supply to ensure power output. The
applied voltage ranged from 0 to 60 V and the current ranged from 0
to 20 A.

Characterization. Image] software was employed to measure the
nanoparticle diameters. For the particles before redispersion in Figure
4, the number of particles analyzed was ~60. For the nanoparticles
after redispersion, the number of particles analyzed was ~100.

Inductively coupled plasma mass spectrometry was carried out with
a PerkinElmer NexION 300D ICP Mass Spectrometer with
autosampler.

The low-magnification morphological images of the particles were
acquired using a field-emission SEM (Tescan XEIA FEG SEM). JEOL
2100F TEM at an accelerating voltage of 200 kV was used to
characterize the nanoparticle morphologies at high resolution. The
XRD patterns were achieved using a D8 Bruker Advanced X-ray
Diffraction system.

Temperature Measurement. The temperature of the CNF was
estimated according to the color ratio pyrometry by using a Vision
Research Phantom Miro M110 high-speed camera with heating video
recorded at 1000 frames/s. Some important variables are the channel
gain (y;), emissivity (¢), and spectral response (y;) of the camera at
individual wavelengths and channels.** The gray-body assumption has
been applied, substituted into Planck’s Law, and integrated over the
entire spectrum to which the camera is sensitive for the temperature
estimation (as shown in eq 1 below). The normalized spectral
response of the camera for the channel was reported by the
manufacturer. By calibrating with a Newport Oriel 67000 Series
Blackbody Infrared Light Source, we determined calibration factors
Cor (green/red), Chg (blue/green), and Cy, (blue/red) in eq 2 and
presented them in Jacob and Kline et al. (assumed valid from 773 to
4773 K)."

L v JL(ENT) £,(2) dA

Ly [LEAT) 1 (4) di (1)

I I
i)l
J 1o 2)

MATLAB was used to extract raw pixel values and calculate
temperatures. The demosaicing routine in MATLAB was used with
the camera’s Bayer color filter array to recover values for red, green,
and blue channels at each pixel. To estimate the temperature, we used
three color ratios (green/ red, blue/green, and blue/ red) simulta-
neously with minimized summed error and summed temperature
errors greater than ~110 K were eliminated. For the temperature
profile, only unsaturated pixels above the black level and within the
error threshold were used to report the mean and median temperature
of the frame for a contiguous area of at least 10 acceptable pixels.
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Electrochemical Measurements. To briefly evaluate the
catalytic activity of the redispersed nanoparticles, we carried out
oxygen reduction linear sweep voltammetry for Pt particles on CNFs
with and without redispersion using a rotating disk electrode (Figure
1b, Figure S1). Both Pt/CNF catalysts were mixed in aqueous solvent
containing 0.05% Nafion and 10% isopropanol with a concentration
of 1 mg/mL. The mixture was ultrasonicated for at least 30 min to
achieve a homogeneous ink. The ink was then drop-casted onto a
glassy carbon rotating disk electrode and allowed to dry to form a
uniform catalyst film. Electrochemical tests were conducted with a
Pine Research rotation disk electrode test system. Ag/AgCl and
graphite rod were adopted as the reference and counter electrodes,
respectively. Fifty milliliters of 1 M KOH was prepared with deionized
water and implemented as the electrolyte. Polarization curves were
measured at a rotation speed of 1600 rpm.
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